IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v119y2009i10p3699-3718.html

New techniques for empirical processes of dependent data

Author

Listed:
  • Dehling, Herold
  • Durieu, Olivier
  • Volny, Dalibor

Abstract

We present a new technique for proving the empirical process invariance principle for stationary processes (Xn)n>=0. The main novelty of our approach lies in the fact that we only require the central limit theorem and a moment bound for a restricted class of functions (f(Xn))n>=0, not containing the indicator functions. Our approach can be applied to Markov chains and dynamical systems, using spectral properties of the transfer operator. Our proof consists of a novel application of chaining techniques.

Suggested Citation

  • Dehling, Herold & Durieu, Olivier & Volny, Dalibor, 2009. "New techniques for empirical processes of dependent data," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3699-3718, October.
  • Handle: RePEc:eee:spapps:v:119:y:2009:i:10:p:3699-3718
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00120-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dedecker, Jérôme & Prieur, Clémentine, 2007. "An empirical central limit theorem for dependent sequences," Stochastic Processes and their Applications, Elsevier, vol. 117(1), pages 121-142, January.
    2. Doukhan, Paul & Louhichi, Sana, 1999. "A new weak dependence condition and applications to moment inequalities," Stochastic Processes and their Applications, Elsevier, vol. 84(2), pages 313-342, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Axel Bücher & Holger Dette & Florian Heinrichs, 2020. "Detecting deviations from second-order stationarity in locally stationary functional time series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 1055-1094, August.
    2. Leucht, Anne & Neumann, Michael H., 2013. "Dependent wild bootstrap for degenerate U- and V-statistics," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 257-280.
    3. Wang, Yizao, 2014. "Convergence to the maximum process of a fractional Brownian motion with shot noise," Statistics & Probability Letters, Elsevier, vol. 90(C), pages 33-41.
    4. Peligrad, Magda, 2020. "A new CLT for additive functionals of Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5695-5708.
    5. Damek, Ewa & Mikosch, Thomas & Zhao, Yuwei & Zienkiewicz, Jacek, 2023. "Whittle estimation based on the extremal spectral density of a heavy-tailed random field," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 232-267.
    6. Mikosch, Thomas & Zhao, Yuwei, 2015. "The integrated periodogram of a dependent extremal event sequence," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3126-3169.
    7. Olivier Durieu & Marco Tusche, 2014. "An Empirical Process Central Limit Theorem for Multidimensional Dependent Data," Journal of Theoretical Probability, Springer, vol. 27(1), pages 249-277, March.
    8. Barrera, David & Peligrad, Costel & Peligrad, Magda, 2016. "On the functional CLT for stationary Markov chains started at a point," Stochastic Processes and their Applications, Elsevier, vol. 126(7), pages 1885-1900.
    9. Dehling, Herold & Durieu, Olivier, 2011. "Empirical processes of multidimensional systems with multiple mixing properties," Stochastic Processes and their Applications, Elsevier, vol. 121(5), pages 1076-1096, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dehling, Herold & Durieu, Olivier, 2011. "Empirical processes of multidimensional systems with multiple mixing properties," Stochastic Processes and their Applications, Elsevier, vol. 121(5), pages 1076-1096, May.
    2. Olivier Durieu & Marco Tusche, 2014. "An Empirical Process Central Limit Theorem for Multidimensional Dependent Data," Journal of Theoretical Probability, Springer, vol. 27(1), pages 249-277, March.
    3. Berkes, István & Hörmann, Siegfried & Schauer, Johannes, 2009. "Asymptotic results for the empirical process of stationary sequences," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1298-1324, April.
    4. Nour-Eddine Berrahou & Salim Bouzebda & Lahcen Douge, 2024. "The Bahadur Representation for Empirical and Smooth Quantile Estimators Under Association," Methodology and Computing in Applied Probability, Springer, vol. 26(2), pages 1-37, June.
    5. El Ghouch, Anouar & Genton, Marc G. & Bouezmarni , Taoufik, 2012. "Measuring the Discrepancy of a Parametric Model via Local Polynomial Smoothing," LIDAM Discussion Papers ISBA 2012001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Jerôme Dedecker & Paul Doukhan, 2002. "A New Covariance Inequality and Applications," Working Papers 2002-25, Center for Research in Economics and Statistics.
    7. Paul Doukhan & Olivier Wintenberger, 2005. "An Invariance Principle for New Weakly Dependent Stationary Models using Sharp Moment Assumptions," Working Papers 2005-51, Center for Research in Economics and Statistics.
    8. Bulinski, Alexander & Suquet, Charles, 2001. "Normal approximation for quasi-associated random fields," Statistics & Probability Letters, Elsevier, vol. 54(2), pages 215-226, September.
    9. Fokianos, Konstantinos, 2024. "Multivariate Count Time Series Modelling," Econometrics and Statistics, Elsevier, vol. 31(C), pages 100-116.
    10. Denis Kojevnikov, 2021. "The Bootstrap for Network Dependent Processes," Papers 2101.12312, arXiv.org.
    11. Hwang, Eunju & Shin, Dong Wan, 2014. "Infinite-order, long-memory heterogeneous autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 339-358.
    12. Berkes, István & Horváth, Lajos & Rice, Gregory, 2013. "Weak invariance principles for sums of dependent random functions," Stochastic Processes and their Applications, Elsevier, vol. 123(2), pages 385-403.
    13. Brendan K. Beare, 2007. "A New Mixing Condition," Economics Series Working Papers 348, University of Oxford, Department of Economics.
    14. David Coupier & Paul Doukhan & Bernard Ycart, 2005. "Zero-one Laws for Binary Random Fields," Working Papers 2005-47, Center for Research in Economics and Statistics.
    15. Vasiliki Christou & Konstantinos Fokianos, 2014. "Quasi-Likelihood Inference For Negative Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 55-78, January.
    16. Xu, Xingbai & Lee, Lung-fei, 2018. "Sieve maximum likelihood estimation of the spatial autoregressive Tobit model," Journal of Econometrics, Elsevier, vol. 203(1), pages 96-112.
    17. Liliana Forzani & Ricardo Fraiman & Pamela Llop, 2013. "Density estimation for spatial-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 321-342, June.
    18. Guessoum, Zohra & Ould Saïd, Elias & Sadki, Ourida & Tatachak, Abdelkader, 2012. "A note on the Lynden-Bell estimator under association," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1994-2000.
    19. José G. Gómez-García & Christophe Chesneau, 2021. "A Dependent Lindeberg Central Limit Theorem for Cluster Functionals on Stationary Random Fields," Mathematics, MDPI, vol. 9(3), pages 1-14, January.
    20. Paul Doukhan & Silika Prohl & Christian Robert, 2011. "Subsampling weakly dependent time series and application to extremes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 447-479, November.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:119:y:2009:i:10:p:3699-3718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.