IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v52y2015icp1834-1846.html
   My bibliography  Save this article

Prospects for biodiesel production from algae-based wastewater treatment in Brazil: A review

Author

Listed:
  • Kligerman, Debora Cynamon
  • Bouwer, Edward J.

Abstract

The modern world is highly dependent on energy. Biodiesel is recognized as a green and alternative renewable diesel fuel, and Brazil is the world׳s third largest producer of biodiesel, which in this country is mainly produced from soybeans. As the demand for biodiesel is increasing due to the increasing use of transportation fuel, it is advisable to look for other sources that would not need a vast cropland. Recently, microalgae have emerged as a source than can play the dual role of bioremediation of wastewater and generation of biomass for biodiesel production. This paper focuses on the feasibility of utilizing wastewater to cultivate algae for the production of biodiesel in Brazil. By using only domestic wastewater from 40% of Brazilian municipalities, the production of biodiesel would increase by 21.4%. Moreover, the use of wastewater treatment becomes an economically attractive alternative as the revenue from selling biodiesel overcomes the production costs by at least 10%. As a result, Brazil could easily increase its current biodiesel production and simultaneously amazingly improve its index of sanitation.

Suggested Citation

  • Kligerman, Debora Cynamon & Bouwer, Edward J., 2015. "Prospects for biodiesel production from algae-based wastewater treatment in Brazil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1834-1846.
  • Handle: RePEc:eee:rensus:v:52:y:2015:i:c:p:1834-1846
    DOI: 10.1016/j.rser.2015.08.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211500876X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.08.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florentino de Souza Silva, Anna Patrícya & Costa, Mayara Carantino & Colzi Lopes, Alexandre & Fares Abdala Neto, Eliezer & Carrhá Leitão, Renato & Mota, César Rossas & Bezerra dos Santos, André, 2014. "Comparison of pretreatment methods for total lipids extraction from mixed microalgae," Renewable Energy, Elsevier, vol. 63(C), pages 762-766.
    2. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2011. "Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production," Applied Energy, Elsevier, vol. 88(10), pages 3411-3424.
    3. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2013. "Biodiesel from microalgae: A critical evaluation from laboratory to large scale production," Applied Energy, Elsevier, vol. 103(C), pages 444-467.
    4. Edward Frank & Amgad Elgowainy & Jeongwoo Han & Zhichao Wang, 2013. "Life cycle comparison of hydrothermal liquefaction and lipid extraction pathways to renewable diesel from algae," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(1), pages 137-158, January.
    5. Chen, Guanyi & Zhao, Liu & Qi, Yun, 2015. "Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: A critical review," Applied Energy, Elsevier, vol. 137(C), pages 282-291.
    6. Tian, Chunyan & Li, Baoming & Liu, Zhidan & Zhang, Yuanhui & Lu, Haifeng, 2014. "Hydrothermal liquefaction for algal biorefinery: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 933-950.
    7. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    8. Cai, Ting & Park, Stephen Y. & Li, Yebo, 2013. "Nutrient recovery from wastewater streams by microalgae: Status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 360-369.
    9. Suali, Emma & Sarbatly, Rosalam, 2012. "Conversion of microalgae to biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4316-4342.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gu, Yifan & Li, Yue & Li, Xuyao & Luo, Pengzhou & Wang, Hongtao & Robinson, Zoe P. & Wang, Xin & Wu, Jiang & Li, Fengting, 2017. "The feasibility and challenges of energy self-sufficient wastewater treatment plants," Applied Energy, Elsevier, vol. 204(C), pages 1463-1475.
    2. Zhang, Rongyan & Zhu, Fenfen & Dong, Yi & Wu, Xuemin & Sun, Yihe & Zhang, Dongrui & Zhang, Tao & Han, Meiling, 2020. "Function promotion of SO42−/Al2O3–SnO2 catalyst for biodiesel production from sewage sludge," Renewable Energy, Elsevier, vol. 147(P1), pages 275-283.
    3. Eyko Medeiros Rios & Danielle Rodrigues Moraes & Gisele Maria Ribeiro Vieira & Bárbara Noronha Gonçalves & Ronney Arismel Mancebo Boloy, 2022. "Dual-fuel compression-ignition engines fuelled with biofuels. A bibliometric review," Environment Systems and Decisions, Springer, vol. 42(1), pages 8-25, March.
    4. Rajaeifar, Mohammad Ali & Abdi, Reza & Tabatabaei, Meisam, 2017. "Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 278-298.
    5. Nikas, A. & Koasidis, K. & Köberle, A.C. & Kourtesi, G. & Doukas, H., 2022. "A comparative study of biodiesel in Brazil and Argentina: An integrated systems of innovation perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Bórawski, Piotr & Holden, Lisa & Bełdycka-Bórawska, Aneta, 2023. "Perspectives of photovoltaic energy market development in the european union," Energy, Elsevier, vol. 270(C).
    7. Klein, Bruno Colling & Chagas, Mateus Ferreira & Watanabe, Marcos Djun Barbosa & Bonomi, Antonio & Maciel Filho, Rubens, 2019. "Low carbon biofuels and the New Brazilian National Biofuel Policy (RenovaBio): A case study for sugarcane mills and integrated sugarcane-microalgae biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    8. Chamkalani, A. & Zendehboudi, S. & Rezaei, N. & Hawboldt, K., 2020. "A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    9. Hajjari, Masoumeh & Tabatabaei, Meisam & Aghbashlo, Mortaza & Ghanavati, Hossein, 2017. "A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 445-464.
    10. Fazal, Tahir & Mushtaq, Azeem & Rehman, Fahad & Ullah Khan, Asad & Rashid, Naim & Farooq, Wasif & Rehman, Muhammad Saif Ur & Xu, Jian, 2018. "Bioremediation of textile wastewater and successive biodiesel production using microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3107-3126.
    11. Piotr Bórawski & Lisa Holden & Marek Bartłomiej Bórawski & Bartosz Mickiewicz, 2022. "Perspectives of Biodiesel Development in Poland against the Background of the European Union," Energies, MDPI, vol. 15(12), pages 1-15, June.
    12. Tandon, Puja & Jin, Qiang, 2017. "Microalgae culture enhancement through key microbial approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1089-1099.
    13. Tu, Renjie & Jin, Wenbiao & Han, Songfang & Zhou, Xu, 2020. "iTRAQ quantitative proteomic analysis reveals lipid metabolism pathway of N+ ion-implanted C. pyrenoidosa cultivated in municipal wastewater," Renewable Energy, Elsevier, vol. 159(C), pages 326-335.
    14. Darvehei, Pooya & Bahri, Parisa A. & Moheimani, Navid R., 2018. "Model development for the growth of microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 233-258.
    15. Rafael Henrique Mainardes Ferreira & Claudia Tania Picinin, 2018. "Bibliometric analysis for characterization of oil production in Brazilian territory," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1945-1974, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheah, Wai Yan & Ling, Tau Chuan & Show, Pau Loke & Juan, Joon Ching & Chang, Jo-Shu & Lee, Duu-Jong, 2016. "Cultivation in wastewaters for energy: A microalgae platform," Applied Energy, Elsevier, vol. 179(C), pages 609-625.
    2. Cuevas-Castillo, Gabriela A. & Navarro-Pineda, Freddy S. & Baz Rodríguez, Sergio A. & Sacramento Rivero, Julio C., 2020. "Advances on the processing of microalgal biomass for energy-driven biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    3. Fazal, Tahir & Mushtaq, Azeem & Rehman, Fahad & Ullah Khan, Asad & Rashid, Naim & Farooq, Wasif & Rehman, Muhammad Saif Ur & Xu, Jian, 2018. "Bioremediation of textile wastewater and successive biodiesel production using microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3107-3126.
    4. Menegazzo, Mariana Lara & Fonseca, Gustavo Graciano, 2019. "Biomass recovery and lipid extraction processes for microalgae biofuels production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 87-107.
    5. Gao, Feng & Cui, Wei & Xu, Jing-Ping & Li, Chen & Jin, Wei-Hong & Yang, Hong-Li, 2019. "Lipid accumulation properties of Chlorella vulgaris and Scenedesmus obliquus in membrane photobioreactor (MPBR) fed with secondary effluent from municipal wastewater treatment plant," Renewable Energy, Elsevier, vol. 136(C), pages 671-676.
    6. Tasić, Marija B. & Pinto, Luisa Fernanda Rios & Klein, Bruno Colling & Veljković, Vlada B. & Filho, Rubens Maciel, 2016. "Botryococcus braunii for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 260-270.
    7. Razzak, Shaikh Abdur & Ali, Saad Aldin M. & Hossain, Mohammad Mozahar & deLasa, Hugo, 2017. "Biological CO2 fixation with production of microalgae in wastewater – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 379-390.
    8. Sandra Lage & Zivan Gojkovic & Christiane Funk & Francesco G. Gentili, 2018. "Algal Biomass from Wastewater and Flue Gases as a Source of Bioenergy," Energies, MDPI, vol. 11(3), pages 1-30, March.
    9. Chen, Guanyi & Zhao, Liu & Qi, Yun, 2015. "Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: A critical review," Applied Energy, Elsevier, vol. 137(C), pages 282-291.
    10. Muhammad Hanafi Azami & Mark Savill, 2017. "Pulse Detonation Assessment for Alternative Fuels," Energies, MDPI, vol. 10(3), pages 1-19, March.
    11. Alaswad, A. & Dassisti, M. & Prescott, T. & Olabi, A.G., 2015. "Technologies and developments of third generation biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1446-1460.
    12. Soratana, Kullapa & Khanna, Vikas & Landis, Amy E., 2013. "Re-envisioning the renewable fuel standard to minimize unintended consequences: A comparison of microalgal diesel with other biodiesels," Applied Energy, Elsevier, vol. 112(C), pages 194-204.
    13. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    14. Sharma, Yogesh Chandra & Singh, Veena, 2017. "Microalgal biodiesel: A possible solution for India’s energy security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 72-88.
    15. Barros, Ana I. & Gonçalves, Ana L. & Simões, Manuel & Pires, José C.M., 2015. "Harvesting techniques applied to microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1489-1500.
    16. Rashid, Naim & Ur Rehman, Muhammad Saif & Sadiq, Madeha & Mahmood, Tariq & Han, Jong-In, 2014. "Current status, issues and developments in microalgae derived biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 760-778.
    17. Maity, Jyoti Prakash & Bundschuh, Jochen & Chen, Chien-Yen & Bhattacharya, Prosun, 2014. "Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives – A mini review," Energy, Elsevier, vol. 78(C), pages 104-113.
    18. Tawfik, Ahmed & Niaz, Haider & Qadeer, Kinza & Qyyum, Muhammad Abdul & Liu, J. Jay & Lee, Moonyong, 2022. "Valorization of algal cells for biomass and bioenergy production from wastewater: Sustainable strategies, challenges, and techno-economic limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    19. Kang, Seongwhan & Heo, Seongmin & Realff, Matthew J. & Lee, Jay H., 2020. "Three-stage design of high-resolution microalgae-based biofuel supply chain using geographic information system," Applied Energy, Elsevier, vol. 265(C).
    20. Raheem, Abdul & Wan Azlina, W.A.K.G. & Taufiq Yap, Y.H. & Danquah, Michael K. & Harun, Razif, 2015. "Thermochemical conversion of microalgal biomass for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 990-999.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:52:y:2015:i:c:p:1834-1846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.