IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v50y2015icp1013-1020.html
   My bibliography  Save this article

Potential of biodiesel production from palm oil at Brazilian Amazon

Author

Listed:
  • Kuss, Vivian Vicentini
  • Kuss, Anelise Vicentini
  • Rosa, Rosana Gomes da
  • Aranda, Donato A.G.
  • Cruz, Yordanka Reyes

Abstract

The search for alternative fuel sources is indispensable to reduce the dependence from petroleum fuels. Biodiesel which is produced from oils and fats is an excellent substitute for diesel. In terms of feedstock, palm oil is highlighted as the traditional culture with best income in oil per hectare and it is one of the most consumed oils in the world. Brazil has great amount of illegally deforested areas in Amazon and these places are able to cultivate palm oil. These areas may be recovered through the palm sustainable planting, developing familiar agriculture and the region׳s economy, besides placing Brazil as one country with highest potential of biodiesel and palm oil production.

Suggested Citation

  • Kuss, Vivian Vicentini & Kuss, Anelise Vicentini & Rosa, Rosana Gomes da & Aranda, Donato A.G. & Cruz, Yordanka Reyes, 2015. "Potential of biodiesel production from palm oil at Brazilian Amazon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1013-1020.
  • Handle: RePEc:eee:rensus:v:50:y:2015:i:c:p:1013-1020
    DOI: 10.1016/j.rser.2015.05.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115005249
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.05.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. dos Santos, Letícia Karen & Hatanaka, Rafael Rodrigues & de Oliveira, José Eduardo & Flumignan, Danilo Luiz, 2019. "Production of biodiesel from crude palm oil by a sequential hydrolysis/esterification process using subcritical water," Renewable Energy, Elsevier, vol. 130(C), pages 633-640.
    2. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Gires, Ezanee & Yu, Jianglong & Lucas, John & Yusaf, Talal, 2021. "Performance and exhaust emissions rate of small-scale turbojet engine running on dual biodiesel blends using Gasturb," Energy, Elsevier, vol. 232(C).
    3. Khairul Azly Zahan & Manabu Kano, 2018. "Biodiesel Production from Palm Oil, Its By-Products, and Mill Effluent: A Review," Energies, MDPI, vol. 11(8), pages 1-25, August.
    4. Sivabalan Kaniapan & Suhaimi Hassan & Hamdan Ya & Kartikeyan Patma Nesan & Mohammad Azeem, 2021. "The Utilisation of Palm Oil and Oil Palm Residues and the Related Challenges as a Sustainable Alternative in Biofuel, Bioenergy, and Transportation Sector: A Review," Sustainability, MDPI, vol. 13(6), pages 1-25, March.
    5. Lakshmy Naidu & Ravichandran Moorthy, 2021. "A Review of Key Sustainability Issues in Malaysian Palm Oil Industry," Sustainability, MDPI, vol. 13(19), pages 1-13, September.
    6. E, Jiaqiang & Pham, MinhHieu & Deng, Yuanwang & Nguyen, Tuannghia & Duy, VinhNguyen & Le, DucHieu & Zuo, Wei & Peng, Qingguo & Zhang, Zhiqing, 2018. "Effects of injection timing and injection pressure on performance and exhaust emissions of a common rail diesel engine fueled by various concentrations of fish-oil biodiesel blends," Energy, Elsevier, vol. 149(C), pages 979-989.
    7. Khatun, Rahima & Reza, Mohammad Imam Hasan & Moniruzzaman, M. & Yaakob, Zahira, 2017. "Sustainable oil palm industry: The possibilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 608-619.
    8. Zhu, Liandong & Nugroho, Y.K. & Shakeel, S.R. & Li, Zhaohua & Martinkauppi, B. & Hiltunen, E., 2017. "Using microalgae to produce liquid transportation biodiesel: What is next?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 391-400.
    9. Bicalho, Tereza & Bessou, Cécile & Pacca, Sergio A., 2016. "Land use change within EU sustainability criteria for biofuels: The case of oil palm expansion in the Brazilian Amazon," Renewable Energy, Elsevier, vol. 89(C), pages 588-597.
    10. Mowla, Omid & Kennedy, Eric & Stockenhuber, Michael, 2019. "Mass transfer and kinetic study on BEA zeolite-catalysed oil hydroesterification," Renewable Energy, Elsevier, vol. 135(C), pages 417-425.
    11. Pourzolfaghar, Hamed & Abnisa, Faisal & Daud, Wan Mohd Ashri Wan & Aroua, Mohamed Kheireddine, 2016. "A review of the enzymatic hydroesterification process for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 245-257.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:50:y:2015:i:c:p:1013-1020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.