IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v49y2015icp1061-1074.html
   My bibliography  Save this article

The potential of sustainable algal biofuel production using CO2 from thermal power plant in India

Author

Listed:
  • Baral, Saroj S.
  • Singh, Kaustub
  • Sharma, Prabudh

Abstract

Thermal power plants in India emit around 500Mt of CO2 annually. All of it is released into the atmosphere untreated. Microalgae, a third generation feedstock for bio-fuel emerges as a viable option for partly sequestering the emissions. Moreover, its carbon capture capacity of 4.8kg CO2/kg biomass, which is very much as compared to terrestrial substitutes like Jhatropa curcas, enables to produce bio fuel hence adding value to the entire process. This paper intends to build upon this idea and come up with strategies to integrate bio fuel production and CO2 sequestration with the existing thermal power plants. The raw materials needed for algal growth are available in the plant as elaborated in the paper. Thus the bio fuel produced can be routed back to power the plant consequently lowering the dependence on coal. This would help in putting a check on the carbon emissions thus making the existing systems more environmentally benign and suitable for long haul. This paper reviews currently employed carbon capture technologies and methods and comes up with a strategy to subsume carbon capture through microalgae with power plants of a certain capacity. 3t/day is taken as the basis for calculations in the proposed flow sheet. An alternative of the above is also provided which substitutes the biofuel production with co-firing. This escalates the nitrogen content of flue gas but deescalates the investment. This brings down the capital investment in the plant but enhances N2 content of flue gas. Carbon leakage is accounted for in a table of atomic balance. It takes care of input and output of carbon. The paper is inclined towards the conclusion that the Microalgae possess incredible potential and if tapped efficaciously could prove to be extremely helpful in these days of power and environmental crisis.

Suggested Citation

  • Baral, Saroj S. & Singh, Kaustub & Sharma, Prabudh, 2015. "The potential of sustainable algal biofuel production using CO2 from thermal power plant in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1061-1074.
  • Handle: RePEc:eee:rensus:v:49:y:2015:i:c:p:1061-1074
    DOI: 10.1016/j.rser.2015.04.181
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115004542
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.04.181?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    2. Janaun, Jidon & Ellis, Naoko, 2010. "Perspectives on biodiesel as a sustainable fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1312-1320, May.
    3. Barnwal, B.K. & Sharma, M.P., 2005. "Prospects of biodiesel production from vegetable oils in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(4), pages 363-378, August.
    4. Lackner, Klaus S. & Wendt, Christopher H. & Butt, Darryl P. & Joyce, Edward L. & Sharp, David H., 1995. "Carbon dioxide disposal in carbonate minerals," Energy, Elsevier, vol. 20(11), pages 1153-1170.
    5. Altenburg, Tilman & Dietz, Hildegard & Hahl, Matthias & Nikolidakis, Nikos & Rosendahl, Christina & Seelige, Kathrin, 2009. "Biodiesel in India: value chain organisation and policy options for rural development," IDOS Studies, German Institute of Development and Sustainability (IDOS), volume 43, number 43.
    6. Kadam, K.L, 2002. "Environmental implications of power generation via coal-microalgae cofiring," Energy, Elsevier, vol. 27(10), pages 905-922.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Xuejiao & Wang, Yong & Wang, Chen, 2017. "Low-carbon development of China's thermal power industry based on an international comparison: Review, analysis and forecast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 942-970.
    2. Enamala, Manoj Kumar & Enamala, Swapnika & Chavali, Murthy & Donepudi, Jagadish & Yadavalli, Rajasri & Kolapalli, Bhulakshmi & Aradhyula, Tirumala Vasu & Velpuri, Jeevitha & Kuppam, Chandrasekhar, 2018. "Production of biofuels from microalgae - A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 49-68.
    3. Esveidi Montserrat Valdovinos-García & Juan Barajas-Fernández & María de los Ángeles Olán-Acosta & Moisés Abraham Petriz-Prieto & Adriana Guzmán-López & Micael Gerardo Bravo-Sánchez, 2020. "Techno-Economic Study of CO 2 Capture of a Thermoelectric Plant Using Microalgae ( Chlorella vulgaris ) for Production of Feedstock for Bioenergy," Energies, MDPI, vol. 13(2), pages 1-19, January.
    4. Pires, José C.M., 2017. "COP21: The algae opportunity?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 867-877.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yang-Jie & Li, Guo-Xiu & Sun, Zuo-Yu, 2016. "Development of biodiesel industry in China: Upon the terms of production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 318-330.
    2. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Hazrat, M.A., 2015. "Prospect of biofuels as an alternative transport fuel in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 331-351.
    3. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2011. "Membrane biodiesel production and refining technology: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5051-5062.
    4. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    5. Charlotte Stead & Zia Wadud & Chris Nash & Hu Li, 2019. "Introduction of Biodiesel to Rail Transport: Lessons from the Road Sector," Sustainability, MDPI, vol. 11(3), pages 1-20, February.
    6. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Mekhilef, S., 2011. "A review on prospect of Jatropha curcas for biodiesel in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3733-3756.
    7. Andres Quintero, Julian & Ruth Felix, Erika & Eduardo Rincón, Luis & Crisspín, Marianella & Fernandez Baca, Jaime & Khwaja, Yasmeen & Cardona, Carlos Ariel, 2012. "Social and techno-economical analysis of biodiesel production in Peru," Energy Policy, Elsevier, vol. 43(C), pages 427-435.
    8. Collet, Pierre & Hélias, Arnaud & Lardon, Laurent & Steyer, Jean-Philippe & Bernard, Olivier, 2015. "Recommendations for Life Cycle Assessment of algal fuels," Applied Energy, Elsevier, vol. 154(C), pages 1089-1102.
    9. Colin M. Beal & Robert E. Hebner & Michael E. Webber & Rodney S. Ruoff & A. Frank Seibert & Carey W. King, 2012. "Comprehensive Evaluation of Algal Biofuel Production: Experimental and Target Results," Energies, MDPI, vol. 5(6), pages 1-39, June.
    10. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    11. Milano, Jassinnee & Ong, Hwai Chyuan & Masjuki, H.H. & Chong, W.T. & Lam, Man Kee & Loh, Ping Kwan & Vellayan, Viknes, 2016. "Microalgae biofuels as an alternative to fossil fuel for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 180-197.
    12. H. Chanakya & Durga Mahapatra & R. Sarada & R. Abitha, 2013. "Algal biofuel production and mitigation potential in India," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(1), pages 113-136, January.
    13. Gan, Peck Yean & Li, Zhi Dong, 2014. "Econometric study on Malaysia׳s palm oil position in the world market to 2035," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 740-747.
    14. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2013. "Biodiesel from microalgae: A critical evaluation from laboratory to large scale production," Applied Energy, Elsevier, vol. 103(C), pages 444-467.
    15. Wu, Wei & Wang, Po-Han & Lee, Duu-Jong & Chang, Jo-Shu, 2017. "Global optimization of microalgae-to-biodiesel chains with integrated cogasification combined cycle systems based on greenhouse gas emissions reductions," Applied Energy, Elsevier, vol. 197(C), pages 63-82.
    16. Choi, Hong Il & Sung, Young Joon & Hong, Min Eui & Han, Jonghee & Min, Byoung Koun & Sim, Sang Jun, 2022. "Reconsidering the potential of direct microalgal biomass utilization as end-products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    17. Bharathiraja, B. & Chakravarthy, M. & Kumar, R. Ranjith & Yuvaraj, D. & Jayamuthunagai, J. & Kumar, R. Praveen & Palani, S., 2014. "Biodiesel production using chemical and biological methods – A review of process, catalyst, acyl acceptor, source and process variables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 368-382.
    18. No, Soo-Young, 2011. "Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 131-149, January.
    19. Lucas Reijnders, 2013. "Lipid‐based liquid biofuels from autotrophic microalgae: energetic and environmental performance," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(1), pages 73-85, January.
    20. Kumar, Sunil & Chaube, Alok & Jain, Shashi Kumar, 2012. "Sustainability issues for promotion of Jatropha biodiesel in Indian scenario: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1089-1098.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:49:y:2015:i:c:p:1061-1074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.