IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v47y2015icp983-996.html
   My bibliography  Save this article

Control strategies of grid interfaced wind energy conversion system: An overview

Author

Listed:
  • Jain, Bhavna
  • Jain, Shailendra
  • Nema, R.K.

Abstract

Wind energy conversion system (WECS) is interfaced with the utility system through power electronic converters which plays an important role in the integration of wind power into the electric grid. The main power quality disturbances due to integration of WECS to grid are variation in power and harmonics. To maintain grid synchronization and to keep total harmonic distortion (THD) within operational limits, appropriate control schemes are required for the grid side converter. The main objective of grid side controller is to control the power delivered to the grid, grid synchronization, to supply high quality power to grid and to meet grid code compliance. In this paper control schemes used in grid interfaced wind energy conversion system for generator side and grid side converter control, are reviewed thoroughly. The paper presents a comparative study of rotor flux oriented control and direct torque control (DTC) techniques applied in generator side converter of permanent magnet synchronous generator (PMSG) drives for wind turbine application. For grid side converter, various control schemes are developed mainly based on voltage oriented control (VOC) or on direct power control (DPC). The performance of VOC based control system basically depends on method applied for current control. A comparative study is done among them and findings are tabulated. Integration requirements of wind turbine to grid, grid synchronization and requirement of monitoring unit are also discussed.

Suggested Citation

  • Jain, Bhavna & Jain, Shailendra & Nema, R.K., 2015. "Control strategies of grid interfaced wind energy conversion system: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 983-996.
  • Handle: RePEc:eee:rensus:v:47:y:2015:i:c:p:983-996
    DOI: 10.1016/j.rser.2015.03.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115002166
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.03.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Verij Kazemi, Mohammad & Sadeghi Yazdankhah, Ahmad & Madadi Kojabadi, Hossein, 2010. "Direct power control of DFIG based on discrete space vector modulation," Renewable Energy, Elsevier, vol. 35(5), pages 1033-1042.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Younes Azelhak & Loubna Benaaouinate & Hicham Medromi & Youssef Errami & Tarik Bouragba & Damien Voyer, 2021. "Exhaustive Comparison between Linear and Nonlinear Approaches for Grid-Side Control of Wind Energy Conversion Systems," Energies, MDPI, vol. 14(13), pages 1-20, July.
    2. Agalar, Sener & Kaplan, Yusuf Alper, 2018. "Power quality improvement using STS and DVR in wind energy system," Renewable Energy, Elsevier, vol. 118(C), pages 1031-1040.
    3. Jaalam, N. & Rahim, N.A. & Bakar, A.H.A. & Tan, ChiaKwang & Haidar, Ahmed M.A., 2016. "A comprehensive review of synchronization methods for grid-connected converters of renewable energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1471-1481.
    4. Shrabani Sahu & Sasmita Behera, 2022. "A review on modern control applications in wind energy conversion system," Energy & Environment, , vol. 33(2), pages 223-262, March.
    5. Avrutin, Viktor & Morcillo, Jose D. & Zhusubaliyev, Zhanybai T. & Angulo, Fabiola, 2017. "Bubbling in a power electronic inverter: Onset, development and detection," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 135-152.
    6. Tiwari, Ramji & Babu, N. Ramesh, 2016. "Recent developments of control strategies for wind energy conversion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 268-285.
    7. Zhicheng Lin & Song Zheng & Zhicheng Chen & Rong Zheng & Wang Zhang, 2019. "Application Research of the Parallel System Theory and the Data Engine Approach in Wind Energy Conversion System," Energies, MDPI, vol. 12(5), pages 1-20, March.
    8. de Freitas, Tiara R.S. & Menegáz, Paulo J.M. & Simonetti, Domingos S.L., 2016. "Rectifier topologies for permanent magnet synchronous generator on wind energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1334-1344.
    9. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2016. "Comprehensive overview of grid interfaced wind energy generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 260-281.
    10. Yingning Qiu & Hongxin Jiang & Yanhui Feng & Mengnan Cao & Yong Zhao & Dan Li, 2016. "A New Fault Diagnosis Algorithm for PMSG Wind Turbine Power Converters under Variable Wind Speed Conditions," Energies, MDPI, vol. 9(7), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ademi, Sul & Jovanovic, Milutin, 2016. "Control of doubly-fed reluctance generators for wind power applications," Renewable Energy, Elsevier, vol. 85(C), pages 171-180.
    2. Hu, Jiabing & Yuan, Xiaoming, 2012. "VSC-based direct torque and reactive power control of doubly fed induction generator," Renewable Energy, Elsevier, vol. 40(1), pages 13-23.
    3. Samiei Sarkhanloo, Mehdi & Sadeghi Yazdankhah, Ahmad & Kazemzadeh, Rasool, 2012. "A new control strategy for small wind farm with capabilities of supplying required reactive power and transient stability improvement," Renewable Energy, Elsevier, vol. 44(C), pages 32-39.
    4. Karthik Tamvada & Rohit Babu, 2022. "Control of doubly fed induction generator for power quality improvement: an overview," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2809-2832, December.
    5. Mohd Zin, Abdullah Asuhaimi B. & Pesaran H.A., Mahmoud & Khairuddin, Azhar B. & Jahanshaloo, Leila & Shariati, Omid, 2013. "An overview on doubly fed induction generators′ controls and contributions to wind based electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 692-708.
    6. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2016. "Comprehensive overview of grid interfaced wind energy generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 260-281.
    7. Taveiros, F.E.V. & Barros, L.S. & Costa, F.B., 2015. "Back-to-back converter state-feedback control of DFIG (doubly-fed induction generator)-based wind turbines," Energy, Elsevier, vol. 89(C), pages 896-906.
    8. Raju, S.Krishnama & Pillai, G.N., 2016. "Design and real time implementation of type-2 fuzzy vector control for DFIG based wind generators," Renewable Energy, Elsevier, vol. 88(C), pages 40-50.
    9. Shahbazi, Mahmoud & Poure, Philippe & Saadate, Shahrokh & Zolghadri, Mohammad Reza, 2011. "Five-leg converter topology for wind energy conversion system with doubly fed induction generator," Renewable Energy, Elsevier, vol. 36(11), pages 3187-3194.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:47:y:2015:i:c:p:983-996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.