IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v214y2025ics1364032125002424.html
   My bibliography  Save this article

Product quality research in the industrialized preparation of electronic grade polysilicon: A review of impurity sources and control strategies

Author

Listed:
  • Yuan, Xingping
  • Guo, Lijie
  • Lv, Qinghui
  • Zhao, Dan
  • Liao, Hua
  • Ma, Wenhui
  • Jiang, Qingyun
  • Xie, Gang
  • Hou, Yanqing
  • Shen, Jinglei

Abstract

Electronic-grade polysilicon is a critical raw material for the high-performance semiconductor industry, requiring extremely high purity levels. The control of impurity content during the production process has a decisive impact on the quality and performance of the final product. The development and improvement of production processes to achieve precise control of impurity content is the core challenge for the industrialized preparation of electronic-grade polysilicon. Based on a brief introduction of the main production processes, this review systematically reviews the impurity sources and effective control strategies in the production of electronic-grade polysilicon based on the modified Siemens process, including the synthesis of raw materials, the distillation and purification of trichlorosilane, the reduction of trichlorosilane, and the separation and recycling of tail gas. Finally, the technical challenges faced in the current production process are pointed out, and look forward to further directions for improving production efficiency and optimizing impurity control in the industrialized preparation of electronic-grade polysilicon. The advancement of new processes, improvement of impurity control strategies, optimization of existing production techniques and equipment, upgrading of resource recycling systems, and the development of intelligent control and automated production technology will be essential drivers for the continued advancement of electronic-grade polysilicon production technology.

Suggested Citation

  • Yuan, Xingping & Guo, Lijie & Lv, Qinghui & Zhao, Dan & Liao, Hua & Ma, Wenhui & Jiang, Qingyun & Xie, Gang & Hou, Yanqing & Shen, Jinglei, 2025. "Product quality research in the industrialized preparation of electronic grade polysilicon: A review of impurity sources and control strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
  • Handle: RePEc:eee:rensus:v:214:y:2025:i:c:s1364032125002424
    DOI: 10.1016/j.rser.2025.115569
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125002424
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115569?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yadav, Shwetank & Chattopadhyay, Kinnor & Singh, Chandra Veer, 2017. "Solar grade silicon production: A review of kinetic, thermodynamic and fluid dynamics based continuum scale modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1288-1314.
    2. Pierre-Jean Ribeyron, 2017. "Crystalline silicon solar cells: Better than ever," Nature Energy, Nature, vol. 2(5), pages 1-2, May.
    3. Liu, Yiyuan & Zhu, Qunzhi & Zhang, Tao & Yan, Xuefeng & Duan, Rui, 2020. "Analysis of chemical-looping hydrogen production and power generation system driven by solar energy," Renewable Energy, Elsevier, vol. 154(C), pages 863-874.
    4. Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
    5. Garvin A. Heath & Timothy J. Silverman & Michael Kempe & Michael Deceglie & Dwarakanath Ravikumar & Timothy Remo & Hao Cui & Parikhit Sinha & Cara Libby & Stephanie Shaw & Keiichi Komoto & Karsten Wam, 2020. "Research and development priorities for silicon photovoltaic module recycling to support a circular economy," Nature Energy, Nature, vol. 5(7), pages 502-510, July.
    6. Yamaguchi, Masafumi, 2001. "Present status and prospects of photovoltaic technologies in Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(2), pages 113-135, June.
    7. Kunta Yoshikawa & Hayato Kawasaki & Wataru Yoshida & Toru Irie & Katsunori Konishi & Kunihiro Nakano & Toshihiko Uto & Daisuke Adachi & Masanori Kanematsu & Hisashi Uzu & Kenji Yamamoto, 2017. "Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%," Nature Energy, Nature, vol. 2(5), pages 1-8, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jae Yun Jeong & Inje Kang & Ki Seok Choi & Byeong-Hee Lee, 2018. "Network Analysis on Green Technology in National Research and Development Projects in Korea," Sustainability, MDPI, vol. 10(4), pages 1-12, April.
    2. Mehmood, Haris & Nasser, Hisham & Zaidi, Syed Muhammad Hassan & Tauqeer, Tauseef & Turan, Raşit, 2022. "Physical device simulation of dopant-free asymmetric silicon heterojunction solar cell featuring tungsten oxide as a hole-selective layer with ultrathin silicon oxide passivation layer," Renewable Energy, Elsevier, vol. 183(C), pages 188-201.
    3. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Kılkış, Şiir & Ulpiani, Giulia & Vetters, Nadja, 2024. "Visions for climate neutrality and opportunities for co-learning in European cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    5. Yanan Shi & Yilin Chang & Kun Lu & Zhihao Chen & Jianqi Zhang & Yangjun Yan & Dingding Qiu & Yanan Liu & Muhammad Abdullah Adil & Wei Ma & Xiaotao Hao & Lingyun Zhu & Zhixiang Wei, 2022. "Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Ivan Deviatkin & Sanna Rousu & Malahat Ghoreishi & Mohammad Naji Nassajfar & Mika Horttanainen & Ville Leminen, 2022. "Implementation of Circular Economy Strategies within the Electronics Sector: Insights from Finnish Companies," Sustainability, MDPI, vol. 14(6), pages 1-11, March.
    7. Maria A. Franco & Stefan N. Groesser, 2021. "A Systematic Literature Review of the Solar Photovoltaic Value Chain for a Circular Economy," Sustainability, MDPI, vol. 13(17), pages 1-35, August.
    8. Changhyun Lee & Soohyun Bae & HyunJung Park & Dongjin Choi & Hoyoung Song & Hyunju Lee & Yoshio Ohshita & Donghwan Kim & Yoonmook Kang & Hae-Seok Lee, 2020. "Properties of Thermally Evaporated Titanium Dioxide as an Electron-Selective Contact for Silicon Solar Cells," Energies, MDPI, vol. 13(3), pages 1-10, February.
    9. Liu, Jiaping & Qi, Yu & Ke, Juyang & Zhao, Yicong & Li, Xiaoqing & Yu, Yang & Sun, Xuyang & Guo, Rui, 2024. "Mechanically programmable substrate enable highly stretchable solar cell arrays for self-powered electronic skin," Applied Energy, Elsevier, vol. 367(C).
    10. Cieciura-Włoch, Weronika & Borowski, Sebastian & Otlewska, Anna, 2020. "Biohydrogen production from fruit and vegetable waste, sugar beet pulp and corn silage via dark fermentation," Renewable Energy, Elsevier, vol. 153(C), pages 1226-1237.
    11. Fabio De Felice & Antonella Petrillo, 2021. "Green Transition: The Frontier of the Digicircular Economy Evidenced from a Systematic Literature Review," Sustainability, MDPI, vol. 13(19), pages 1-26, October.
    12. Li, Zhenpeng & Ma, Tao, 2022. "Theoretic efficiency limit and design criteria of solar photovoltaics with high visual perceptibility," Applied Energy, Elsevier, vol. 324(C).
    13. Rios-Del Toro, E. Emilia & Chi, Hetian & González-Álvarez, Víctor & Méndez-Acosta, Hugo O. & Arreola-Vargas, Jorge & Liu, Hao, 2021. "Coupling the biochemical and thermochemical biorefinery platforms to enhance energy and product recovery from Agave tequilana bagasse," Applied Energy, Elsevier, vol. 299(C).
    14. Issa M. Aziz, 2023. "Synthesizing and characterization of Lead Halide Perovskite Nanocrystals solar cells from reused car batteries," Technium, Technium Science, vol. 10(1), pages 14-26.
    15. Meng-Hsueh Kuo & Neda Neykova & Ivo Stachiv, 2024. "Overview of the Recent Findings in the Perovskite-Type Structures Used for Solar Cells and Hydrogen Storage," Energies, MDPI, vol. 17(18), pages 1-23, September.
    16. Przemysław Liczbiński & Sebastian Borowski, 2020. "Hyperthermophilic Treatment of Grass and Leaves to Produce Hydrogen, Methane and VFA-Rich Digestate: Preliminary Results," Energies, MDPI, vol. 13(11), pages 1-12, June.
    17. Wang, Yangyang & Liu, Yangyang & Xu, Zaifeng & Yin, Kexin & Zhou, Yaru & Zhang, Jifu & Cui, Peizhe & Ma, Shinan & Wang, Yinglong & Zhu, Zhaoyou, 2024. "A review on renewable energy-based chemical engineering design and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    18. Chantana, Jakapan & Takeguchi, Kota & Kawano, Yu & Minemoto, Takashi, 2022. "Estimation of annual energy generation of perovskite/crystalline Si tandem solar cells with different configurations in central part of Japan," Renewable Energy, Elsevier, vol. 195(C), pages 896-905.
    19. Abyl Muradov & Daria Frolushkina & Vadim Samusenkov & Gulsara Zhamanbayeva & Sebastian Kot, 2021. "Methods of Stability Control of Perovskite Solar Cells for High Efficiency," Energies, MDPI, vol. 14(10), pages 1-16, May.
    20. Hoyoung Song & Changhyun Lee & Jiyeon Hyun & Sang-Won Lee & Dongjin Choi & Dowon Pyun & Jiyeon Nam & Seok-Hyun Jeong & Jiryang Kim & Soohyun Bae & Hyunju Lee & Yoonmook Kang & Donghwan Kim & Hae-Seok , 2021. "Monolithic Perovskite-Carrier Selective Contact Silicon Tandem Solar Cells Using Molybdenum Oxide as a Hole Selective Layer," Energies, MDPI, vol. 14(11), pages 1-9, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:214:y:2025:i:c:s1364032125002424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.