IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v210y2025ics1364032124009377.html
   My bibliography  Save this article

Electrical power generation and utilization in advanced desalination systems

Author

Listed:
  • Arunkumar, Thirugnanasambantham
  • Wilson, Higgins Marangattil
  • Pandit, Tushar Prashant
  • Lee, Sang Joon

Abstract

Seawater desalination can be a viable solution to global fresh water scarcity. Recent innovations integrating electricity have shown to enhance efficiency and functionality in advanced desalination systems by leveraging salinity gradients and thermoelectric effects to generate electricity, while applying input electric current to improve desalination performance via Joule heating. This review highlights the role of electricity in recent advanced desalination technologies, emphasizing its impact on freshwater production and renewable energy generation. Electricity-driven systems, incorporating solar thermal and low-voltage electrothermal evaporation, ensure stable operation under varying environmental conditions. Input electricity boosts thermal efficiency, overcomes the limitations of inconsistent sunlight, and increases evaporation rates. Simultaneously, electricity-generating systems harness salinity gradients, thermoelectric conversion, and nanostructured materials to cogenerate electricity and freshwater simultaneously. This generated power sufficient to run small electronic devices offers practical solutions in remote or resource-limited areas. This dual functionality — enhancing desalination performance and generating electricity — addresses both water scarcity and energy needs. By examining the recent advancements in materials, system designs, and the water-energy nexus, this review explores the potential of integrated desalination systems for scalable and sustainable applications.

Suggested Citation

  • Arunkumar, Thirugnanasambantham & Wilson, Higgins Marangattil & Pandit, Tushar Prashant & Lee, Sang Joon, 2025. "Electrical power generation and utilization in advanced desalination systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:rensus:v:210:y:2025:i:c:s1364032124009377
    DOI: 10.1016/j.rser.2024.115211
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124009377
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115211?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hadi Ghasemi & George Ni & Amy Marie Marconnet & James Loomis & Selcuk Yerci & Nenad Miljkovic & Gang Chen, 2014. "Solar steam generation by heat localization," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    2. Guo, Qijing & Yi, Hao & Jia, Feifei & Song, Shaoxian, 2022. "Vertical porous MoS2/hectorite double-layered aerogel as superior salt resistant and highly efficient solar steam generators," Renewable Energy, Elsevier, vol. 194(C), pages 68-79.
    3. Su, Jinbu & Zhang, Pengkui & Yang, Rui & Wang, Boli & Zhao, Heng & Wang, Weike & Wang, Chengbing, 2022. "MXene-based flexible and washable photothermal fabrics for efficiently continuous solar-driven evaporation and desalination of seawater," Renewable Energy, Elsevier, vol. 195(C), pages 407-415.
    4. Ma, Sainan & Chiu, Chun Pang & Zhu, Yujiao & Tang, Chun Yin & Long, Hui & Qarony, Wayesh & Zhao, Xinhua & Zhang, Xuming & Lo, Wai Hung & Tsang, Yuen Hong, 2017. "Recycled waste black polyurethane sponges for solar vapor generation and distillation," Applied Energy, Elsevier, vol. 206(C), pages 63-69.
    5. Gao, Datong & Li, Jing & Ren, Xiao & Hu, Tianxiang & Pei, Gang, 2022. "A novel direct steam generation system based on the high-vacuum insulated flat plate solar collector," Renewable Energy, Elsevier, vol. 197(C), pages 966-977.
    6. Luo, Xiao & Wu, Dongxu & Huang, Congliang & Rao, Zhonghao, 2019. "Skeleton double layer structure for high solar steam generation," Energy, Elsevier, vol. 183(C), pages 1032-1039.
    7. Wu, Dongxu & Cui, Qi & Gao, Yuanzhi & Dai, Zhaofeng & Chen, Bo & Wang, Changling & Zhang, Xiaosong, 2022. "Study on the performance of solar interfacial evaporation for high-efficiency liquid desiccant regeneration," Energy, Elsevier, vol. 257(C).
    8. Zhang, Lenan & Xu, Zhenyuan & Bhatia, Bikram & Li, Bangjun & Zhao, Lin & Wang, Evelyn N., 2020. "Modeling and performance analysis of high-efficiency thermally-localized multistage solar stills," Applied Energy, Elsevier, vol. 266(C).
    9. Jin, Haichuan & Lin, Guiping & Zeiny, Aimen & Bai, Lizhan & Wen, Dongsheng, 2019. "Nanoparticle-based solar vapor generation: An experimental and numerical study," Energy, Elsevier, vol. 178(C), pages 447-459.
    10. Ashish Chandran, K. & Sujith Kumar, C.S. & Arun, K. Raj, 2024. "Performance evaluation of interfacial evaporation assisted solar still with patterned floating absorber and external reflectors," Renewable Energy, Elsevier, vol. 235(C).
    11. Gong, Biyao & Yang, Huachao & Wu, Shenghao & Tian, Yikuan & Yan, Jianhua & Cen, Kefa & Bo, Zheng & Ostrikov, Kostya (Ken), 2021. "Phase change material enhanced sustained and energy-efficient solar-thermal water desalination," Applied Energy, Elsevier, vol. 301(C).
    12. Zhou, Zhaozixuan & Gong, Junyao & Zhang, Chunhua & Tang, Wenyang & Wei, Bangyang & Wang, Jiandong & Fu, Zhuan & Li, Li & Li, Wenbin & Xia, Liangjun, 2023. "Hierarchically porous carbonized Pleurotus eryngii based solar steam generator for efficient wastewater purification," Renewable Energy, Elsevier, vol. 216(C).
    13. Mohamed A. Abdelsalam & Muhammad Sajjad & Aikifa Raza & Faisal AlMarzooqi & TieJun Zhang, 2024. "Sustainable biomimetic solar distillation with edge crystallization for passive salt collection and zero brine discharge," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Fang, Wei & Zhao, Lei & He, Xuan & Chen, Hui & Li, Weixin & Zeng, Xianghui & Chen, Xiaodong & Shen, Yue & Zhang, Wenhao, 2020. "Carbonized rice husk foam constructed by surfactant foaming method for solar steam generation," Renewable Energy, Elsevier, vol. 151(C), pages 1067-1075.
    15. Gnanasekaran, Arulmurugan & Rajaram, Kamatchi, 2024. "Rational design of different interfacial evaporators for solar steam generation: Recent development, fabrication, challenges and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    16. Eliodoro Chiavazzo, 2022. "Critical aspects to enable viable solar-driven evaporative technologies for water treatment," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    17. Liu, Shang & Huang, Congliang & Luo, Xiao & Guo, Chuwen, 2019. "Performance optimization of bi-layer solar steam generation system through tuning porosity of bottom layer," Applied Energy, Elsevier, vol. 239(C), pages 504-513.
    18. Wang, Xinzhi & He, Yurong & Liu, Xing & Cheng, Gong & Zhu, Jiaqi, 2017. "Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes," Applied Energy, Elsevier, vol. 195(C), pages 414-425.
    19. Mu, L. & Chen, L. & Lin, L. & Park, Y.H. & Wang, H. & Xu, P. & Kota, K. & Kuravi, S., 2021. "An overview of solar still enhancement approaches for increased freshwater production rates from a thermal process perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    20. Yajie Hu & Hongyun Ma & Mingmao Wu & Tengyu Lin & Houze Yao & Feng Liu & Huhu Cheng & Liangti Qu, 2022. "A reconfigurable and magnetically responsive assembly for dynamic solar steam generation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:210:y:2025:i:c:s1364032124009377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.