Author
Listed:
- Yuanhang Cao
(Sichuan University)
- Jiemin Wang
(Sichuan University)
- Weixin Guan
(The University of Texas at Austin)
- Meng An
(Beijing Institute of Technology)
- Peng Yan
(Shaanxi University of Science and Technology)
- Zhengtong Li
(Hohai University)
- Changsheng Zhao
(Sichuan University)
- Guihua Yu
(The University of Texas at Austin)
Abstract
Interfacial solar-driven evaporation has attracted great research interests, given its high conversion efficiency of solar energy and transformative industrial potential for desalination. However, current evaporators with porous volume remain critical challenges by inherently balancing efficient fluid transport and effective heat localization. Herein, we propose the strategy and design of lightweight, flexible and monolayered fluidic diode membrane-based evaporators, featuring regularly arrayed macropores and dense nanopores on each side. Such a delicate microstructure offers universality in establishing asymmetric channels along macroporous-to-nanoporous to enable the diode-like directional water transport as well as facilitate the heat localization on the nanopores side. Consequently, a high evaporation rate of a maximum 3.82 kg m−2 h−1 can be achieved under 1 sun illumination, exceeding most 2D and 3D evaporators. Besides, the durability and practicability of our evaporators are validated through salt resistance tests, purification experiments among various contaminants, and outdoor evaluations. Moreover, the structure engineering and water-transport optimization of fluidic diode membranes also offer potentials for hydrovoltaic applications, with over 1.6 V generated by tandem devices at the ambient environment. This work provides a concept for designing high-performance monolayered membranes applicable in environmental and energy-related realms.
Suggested Citation
Yuanhang Cao & Jiemin Wang & Weixin Guan & Meng An & Peng Yan & Zhengtong Li & Changsheng Zhao & Guihua Yu, 2025.
"Spatially regulated water-heat transport by fluidic diode membrane for efficient solar-powered desalination and electricity generation,"
Nature Communications, Nature, vol. 16(1), pages 1-13, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60283-6
DOI: 10.1038/s41467-025-60283-6
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60283-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.