IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v210y2025ics1364032124009213.html
   My bibliography  Save this article

Preparation, characterization, and selection of nano-assisted phase change materials for thermal management and storage applications

Author

Listed:
  • Zacharias, Anto
  • Baby, Rajesh
  • Maria, Hanna J.
  • Thomas, Sabu

Abstract

The trend toward high-power-density, compact electronic devices demands effective heat control to preserve lifespan and performance. Phase Change Materials (PCMs) provide a lightweight, passive option because of their high latent heat, whereas active cooling techniques like fans can increase bulk and cost. High specific heat capacity, minimal volume change during phase transition, operating temperature, and melting point are all necessary when choosing a PCM. However, the restricted application scope of PCMs due to their low thermal conductivity is overcome by adding thermal conductivity enhancers, including nanomaterials. This paper studies the preparation, classification, and selection criteria of Nano-enhanced Phase Change Materials (NePCMs) utilizing methods such as the response surface approach and multi-criteria decision-making, based on two decades of research in this area. For an in-depth understanding of how nanoparticles impact PCMs' thermophysical properties, the paper discusses characterization methods like TEM, SEM, DSC, XRD, and IR spectroscopy. Integration of nanomaterials improves energy efficiency and minimizes environmental effects, integrating nano-enhanced PCM with sustainable development goals 13 (Climate Action) and 7 (Affordable and Clean Energy). Nano-enhanced PCM provides an alternative to advanced thermal management solutions in electronics and thermal storage applications by addressing thermal performance issues.

Suggested Citation

  • Zacharias, Anto & Baby, Rajesh & Maria, Hanna J. & Thomas, Sabu, 2025. "Preparation, characterization, and selection of nano-assisted phase change materials for thermal management and storage applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:rensus:v:210:y:2025:i:c:s1364032124009213
    DOI: 10.1016/j.rser.2024.115195
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124009213
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115195?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:210:y:2025:i:c:s1364032124009213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.