IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v200y2024ics1364032124003253.html
   My bibliography  Save this article

Predictive models for photosynthetic active radiation irradiance in temperate climates

Author

Listed:
  • Musleh, Yazan J.K.
  • Rahman, Tasmiat

Abstract

This research evaluated 10 different empirical models designed for predicting Photosynthetically Active Radiation (PAR) at higher latitudes, addressing atmospheric conditions specific to these regions. The research introduces the Musleh-Rahman (MR) model, which substitutes Diffuse Horziontal Irradiance (DHI) with Clear Direct Normal Irradiance (DNI), Ozone and Aerosol Optical Depth at 550 nm (AOD550) sourced for satellite reanalysis data, achieving a Mean Bias Deviation (MBD) of 0.19 % and Root Mean Square Error (RMSE) of 12.42 W/m2. Furthermore, when applied to six untested locations, results demonstrate that the MR model outperformed the best performing empirical model with an MBD improvement of 3.68 % and an RMSE of 4.28 W/m2, whereas, when compared to machine learning models, the Light Gradient Boost Model (LGBM), had an MBD of −3.85 %. The MR model also maintained consistency across seasonal and density evaluations, attaining an R2 value as high as 0.9709, thereby highlighting the significant benefits of integrating satellite-sourced atmospheric data into PAR prediction models. Moreover, the research illustrated that substituting DHI with Clear DNI, Ozone, and AOD550 not only reduces MBD and boosts R2 values but also amplifies the model's applicability and accuracy in capturing early PAR peaks and reducing overestimations through precise adjustments in Ozone and AOD550 levels. This highlights the benefits of incorporating satellite-derived atmospheric data into PAR predictions models.

Suggested Citation

  • Musleh, Yazan J.K. & Rahman, Tasmiat, 2024. "Predictive models for photosynthetic active radiation irradiance in temperate climates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:rensus:v:200:y:2024:i:c:s1364032124003253
    DOI: 10.1016/j.rser.2024.114599
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124003253
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114599?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mercier, Thomas M. & Sabet, Amin & Rahman, Tasmiat, 2024. "Vision transformer models to measure solar irradiance using sky images in temperate climates," Applied Energy, Elsevier, vol. 362(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:200:y:2024:i:c:s1364032124003253. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.