IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v187y2023ics1364032123005646.html
   My bibliography  Save this article

Thermal management in legacy air-cooled data centers: An overview and perspectives

Author

Listed:
  • Isazadeh, Amin
  • Ziviani, Davide
  • Claridge, David E.

Abstract

Depletion of fossil fuel reservoirs, greenhouse gas emissions' impact on global warming, and rising energy costs are pushing the data center sector to reduce energy use. This paper reviews strategies for improving the energy performance of air-cooled systems in datacom facilities and enhancing temperature and flow distribution in white space by analyzing different airflow delivery architectures (hard floor and raised floor designs), eliminating cold and hot air mixing by incorporating cold/hot aisle containment or exhaust chimneys, and potential energy savings achievable by utilizing evaporative cooling systems. It was found that the optimal ventilation system is hard-floor architecture with locally-ducted supply and return air. Hard floor is less complicated than raised floor design, and overhead supply air can minimize hot spots at the top of racks. Airflow management strategies including cold and hot aisle formation, aisle containment, and exhaust chimneys can reduce annual cooling energy usage by 10–50% in conjunction with air-side and water-side economizers, minimize hot spots, and enhance thermal performance during cooling system failure. Hot-Aisle Containment or exhaust chimneys provide better thermal and energy performance than open and/or cold-aisle containment, but they require new ducting in traditional data centers. Depending on the climate and geographical location, evaporative cooling can reduce annual cooling energy usage by 20–70% and lead to Power Usage Effectiveness as low as 1.06. Evaporative coolers are more suitable for dry climates, but this limitation can be ameliorated by incorporating desiccant wheels and thermal energy storage.

Suggested Citation

  • Isazadeh, Amin & Ziviani, Davide & Claridge, David E., 2023. "Thermal management in legacy air-cooled data centers: An overview and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:rensus:v:187:y:2023:i:c:s1364032123005646
    DOI: 10.1016/j.rser.2023.113707
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123005646
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113707?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:187:y:2023:i:c:s1364032123005646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.