IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v178y2023ics1364032123000758.html
   My bibliography  Save this article

Zeolite catalysts for the valorization of biomass into platform compounds and biochemicals/biofuels: A review

Author

Listed:
  • Yan, Puxiang
  • Wang, Haiyong
  • Liao, Yuhe
  • Wang, Chenguang

Abstract

The catalytic upgrading of biomass into high-value biochemicals and biofuels has been considered as a promising strategy for the efficient utilization of biomass energy and has received increasing attention. Levulinic acid (LA) and 5-hydroxymethylfurfural (HMF), derived from biomass, are two well-known biobased platform molecules. A variety of value-added biochemicals and biofuels can be obtained from LA and HMF to replace the corresponding petroleum products. Zeolites with high stability and excellent tunability (mainly acid properties and porous structure) have shown remarkable catalytic performance in biomass valorization and can be used as a promising heterogeneous catalyst for targeted conversion of biomass. This review not only provides a comprehensive overview of recent advances on zeolite-catalyzed biomass conversion to LA and HMF, but also systematically summarizes the latest achievements on the production of valuable derivatives of LA and HMF over zeolite. The topics mainly focus on the modification methods, active sites, structures and catalytic mechanisms of zeolites. The synthesis or modification methods of zeolites have major impact on their active sites and structures, which further influence the catalytic activity and reaction mechanisms. Zeolite design and corresponding catalytic mechanism research will be necessary to facilitate the valorization of biomass. Future efforts on zeolite-catalyzed biomass valorization are also proposed.

Suggested Citation

  • Yan, Puxiang & Wang, Haiyong & Liao, Yuhe & Wang, Chenguang, 2023. "Zeolite catalysts for the valorization of biomass into platform compounds and biochemicals/biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:rensus:v:178:y:2023:i:c:s1364032123000758
    DOI: 10.1016/j.rser.2023.113219
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123000758
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113219?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Zhijia & Liu, Xing'e & Fei, Benhua & Jiang, Zehui & Cai, Zhiyong & Yu, Yan, 2013. "The properties of pellets from mixing bamboo and rice straw," Renewable Energy, Elsevier, vol. 55(C), pages 1-5.
    2. Liang, Jie & Shan, Guangcun & Sun, Yifei, 2021. "Catalytic fast pyrolysis of lignocellulosic biomass: Critical role of zeolite catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Wang, Ruoqing & Shen, Feng & Tang, Yiwei & Guo, Haixin & Lee Smith, Richard & Qi, Xinhua, 2021. "Selective conversion of furfuryl alcohol to levulinic acid by SO3H-containing silica nanoflower in GVL/H2O system," Renewable Energy, Elsevier, vol. 171(C), pages 124-132.
    4. Hu, Lei & Lin, Lu & Wu, Zhen & Zhou, Shouyong & Liu, Shijie, 2017. "Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 230-257.
    5. Yuriy Román-Leshkov & Christopher J. Barrett & Zhen Y. Liu & James A. Dumesic, 2007. "Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates," Nature, Nature, vol. 447(7147), pages 982-985, June.
    6. Feng, Li & Li, Xuhao & Lin, Yinhe & Liang, Yicong & Chen, Yuning & Zhou, Wen, 2020. "Catalytic hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Ru based catalyst: Effects of process parameters on conversion and products selectivity," Renewable Energy, Elsevier, vol. 160(C), pages 261-268.
    7. Ong, Hwai Chyuan & Yu, Kai Ling & Chen, Wei-Hsin & Pillejera, Ma Katreena & Bi, Xiaotao & Tran, Khanh-Quang & Pétrissans, Anelie & Pétrissans, Mathieu, 2021. "Variation of lignocellulosic biomass structure from torrefaction: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    8. Hafizi, Hamid & Walker, Gavin & Collins, Maurice N., 2022. "Efficient production of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and carbohydrates over lewis/brønsted hybrid magnetic dendritic fibrous silica core-shell catalyst," Renewable Energy, Elsevier, vol. 183(C), pages 459-471.
    9. Alipour, Siamak & Omidvarborna, Hamid & Kim, Dong-Shik, 2017. "A review on synthesis of alkoxymethyl furfural, a biofuel candidate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 908-926.
    10. Yu, Zhihao & Lu, Xuebin & Liu, Chen & Han, Yiwen & Ji, Na, 2019. "Synthesis of γ-valerolactone from different biomass-derived feedstocks: Recent advances on reaction mechanisms and catalytic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 140-157.
    11. Wang, Hongliang & Yang, Bin & Zhang, Qian & Zhu, Wanbin, 2020. "Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dowaki, Taishi & Guo, Haixin & Smith, Richard Lee, 2022. "Lignin-derived biochar solid acid catalyst for fructose conversion into 5-ethoxymethylfurfural," Renewable Energy, Elsevier, vol. 199(C), pages 1534-1542.
    2. Yu, Yixuan & Liu, Huai & Zhang, Junhua & Zhang, Heng & Sun, Yong & Peng, Lincai, 2023. "Highly efficient, amorphous bimetal Ni-Fe borides-catalyzed hydrogenolysis of 5-hydroxymethylfurfural into 2,5-dimethylfuran," Renewable Energy, Elsevier, vol. 209(C), pages 453-461.
    3. Wang, Haiyong & Zhu, Changhui & Li, Dan & Liu, Qiying & Tan, Jin & Wang, Chenguang & Cai, Chiliu & Ma, Longlong, 2019. "Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 227-247.
    4. Hu, Lei & Wu, Zhen & Jiang, Yetao & Wang, Xiaoyu & He, Aiyong & Song, Jie & Xu, Jiming & Zhou, Shouyong & Zhao, Yijiang & Xu, Jiaxing, 2020. "Recent advances in catalytic and autocatalytic production of biomass-derived 5-hydroxymethylfurfural," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Yang, Yantao & Qu, Xia & Huang, Guorun & Ren, Suxia & Dong, Lili & Sun, Tanglei & Liu, Peng & Li, Yanling & Lei, Tingzhou & Cai, Junmeng, 2023. "Insight into lignocellulosic biomass torrefaction kinetics with case study of pinewood sawdust torrefaction," Renewable Energy, Elsevier, vol. 215(C).
    6. Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
    7. Song, Xiaobing & Zhang, Shouyu & Wu, Yuanmo & Cao, Zhongyao, 2020. "Investigation on the properties of the bio-briquette fuel prepared from hydrothermal pretreated cotton stalk and wood sawdust," Renewable Energy, Elsevier, vol. 151(C), pages 184-191.
    8. So-Yeon Jeong & Jae-Won Lee, 2021. "Effects of Sugars and Degradation Products Derived from Lignocellulosic Biomass on Maleic Acid Production," Energies, MDPI, vol. 14(4), pages 1-11, February.
    9. Yang, Fengli & Weng, Jushi & Ding, Jiajing & Zhao, Zhiyan & Qin, Lizhen & Xia, Feifei, 2020. "Effective conversion of saccharides into hydroxymethylfurfural catalyzed by a natural clay, attapulgite," Renewable Energy, Elsevier, vol. 151(C), pages 829-836.
    10. Qianshi, Song & Wei, Zhang & Xiaowei, Wang & Xiaohan, Wang & Haowen, Li & Zixin, Yang & Yue, Ye & Guangqian, Luo, 2023. "Comprehensive effects of different inorganic elements on initial biomass char-CO2 gasification reactivity in micro fluidised bed reactor: Theoretical modeling and experiment analysis," Energy, Elsevier, vol. 262(PA).
    11. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    12. Zheng, Zunqing & Wang, XiaoFeng & Zhong, Xiaofan & Hu, Bin & Liu, Haifeng & Yao, Mingfa, 2016. "Experimental study on the combustion and emissions fueling biodiesel/n-butanol, biodiesel/ethanol and biodiesel/2,5-dimethylfuran on a diesel engine," Energy, Elsevier, vol. 115(P1), pages 539-549.
    13. Huang, Rulu & Liu, Huai & Zhang, Junhua & Cheng, Yuan & He, Liang & Peng, Lincai, 2022. "Tea polyphenol and HfCl4 Co-doped polyacrylonitrile nanofiber for highly efficient transformation of levulinic acid to γ-valerolactone," Renewable Energy, Elsevier, vol. 200(C), pages 234-243.
    14. Hu, Di & Zhang, Man & Xu, Hong & Wang, Yuchen & Yan, Kai, 2021. "Recent advance on the catalytic system for efficient production of biomass-derived 5-hydroxymethylfurfural," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    15. Bao, Xiuchao & Jiang, Yizhou & Xu, Hongming & Wang, Chongming & Lattimore, Thomas & Tang, Lan, 2017. "Laminar flame characteristics of cyclopentanone at elevated temperatures," Applied Energy, Elsevier, vol. 195(C), pages 671-680.
    16. Sunyong Park & Hui-Rim Jeong & Yun-A Shin & Seok-Jun Kim & Young-Min Ju & Kwang-Cheol Oh & La-Hoon Cho & DaeHyun Kim, 2021. "Performance Optimisation of Fuel Pellets Comprising Pepper Stem and Coffee Grounds through Mixing Ratios and Torrefaction," Energies, MDPI, vol. 14(15), pages 1-16, August.
    17. Tian, Hong & Chen, Lei & Huang, Zhangjun & Cheng, Shan & Yang, Yang, 2022. "Increasing the bio-aromatics yield in the biomass pyrolysis oils by the integration of torrefaction deoxygenation pretreatment and catalytic fast pyrolysis with a dual catalyst system," Renewable Energy, Elsevier, vol. 187(C), pages 561-571.
    18. Huang, Yuhan & Surawski, Nic C. & Zhuang, Yuan & Zhou, John L. & Hong, Guang, 2021. "Dual injection: An effective and efficient technology to use renewable fuels in spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    19. Marrugo, Gloria & Valdés, Carlos F. & Gómez, Carlos & Chejne, Farid, 2019. "Pelletizing of Colombian agro-industrial biomasses with crude glycerol," Renewable Energy, Elsevier, vol. 134(C), pages 558-568.
    20. Mazen A. Eldeeb & Benjamin Akih-Kumgeh, 2018. "Recent Trends in the Production, Combustion and Modeling of Furan-Based Fuels," Energies, MDPI, vol. 11(3), pages 1-47, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:178:y:2023:i:c:s1364032123000758. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.