IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i7p5355-5362.html
   My bibliography  Save this article

Modeling of phase change materials for applications in whole building simulation

Author

Listed:
  • Mirzaei, Parham A.
  • Haghighat, Fariborz

Abstract

The advanced buildings of tomorrow will need to take advantage of renewable, ambient and waste energy to approach ultra-low energy buildings. Such buildings will need to consider Thermal Energy Storage (TES) techniques customized for smaller loads.

Suggested Citation

  • Mirzaei, Parham A. & Haghighat, Fariborz, 2012. "Modeling of phase change materials for applications in whole building simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5355-5362.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:7:p:5355-5362
    DOI: 10.1016/j.rser.2012.04.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112003280
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.04.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Verma, Prashant & Varun & Singal, S.K., 2008. "Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 999-1031, May.
    2. Dutil, Yvan & Rousse, Daniel R. & Salah, Nizar Ben & Lassue, Stéphane & Zalewski, Laurent, 2011. "A review on phase-change materials: Mathematical modeling and simulations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 112-130, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valerio Lo Brano & Giuseppina Ciulla & Antonio Piacentino & Fabio Cardona, 2013. "On the Efficacy of PCM to Shave Peak Temperature of Crystalline Photovoltaic Panels: An FDM Model and Field Validation," Energies, MDPI, vol. 6(12), pages 1-23, November.
    2. Osma-Pinto, German & Ordóñez-Plata, Gabriel, 2020. "Dynamic thermal modelling for the prediction of the operating temperature of a PV panel with an integrated cooling system," Renewable Energy, Elsevier, vol. 152(C), pages 1041-1054.
    3. Lee, Kyoung Ok & Medina, Mario A. & Raith, Erik & Sun, Xiaoqin, 2015. "Assessing the integration of a thin phase change material (PCM) layer in a residential building wall for heat transfer reduction and management," Applied Energy, Elsevier, vol. 137(C), pages 699-706.
    4. Wang, Zhangyuan & Qiu, Feng & Yang, Wansheng & Zhao, Xudong, 2015. "Applications of solar water heating system with phase change material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 645-652.
    5. Yin, Jianbao & Wang, Shisong & Hou, Xu & Wang, Zixian & Ye, Mengyan & Xing, Yuming, 2023. "Transient prediction model of finned tube energy storage system based on thermal network," Applied Energy, Elsevier, vol. 336(C).
    6. Punita Sangwan & Hooman Mehdizadeh-Rad & Anne Wai Man Ng & Muhammad Atiq Ur Rehman Tariq & Raphael Chukwuka Nnachi, 2022. "Performance Evaluation of Phase Change Materials to Reduce the Cooling Load of Buildings in a Tropical Climate," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    7. Nabavitabatabayi, Mohammadreza & Haghighat, Fariborz & Moreau, Alain & Sra, Paul, 2014. "Numerical analysis of a thermally enhanced domestic hot water tank," Applied Energy, Elsevier, vol. 129(C), pages 253-260.
    8. Kenisarin, Murat & Mahkamov, Khamid, 2016. "Passive thermal control in residential buildings using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 371-398.
    9. Joybari, Mahmood Mastani & Seddegh, Saeid & Wang, Xiaolin & Haghighat, Fariborz, 2019. "Experimental investigation of multiple tube heat transfer enhancement in a vertical cylindrical latent heat thermal energy storage system," Renewable Energy, Elsevier, vol. 140(C), pages 234-244.
    10. Lamrani, B. & Johannes, K. & Kuznik, F., 2021. "Phase change materials integrated into building walls: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    11. Bastani, Arash & Haghighat, Fariborz & Kozinski, Janusz, 2014. "Designing building envelope with PCM wallboards: Design tool development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 554-562.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    2. Waqas, Adeel & Ud Din, Zia, 2013. "Phase change material (PCM) storage for free cooling of buildings—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 607-625.
    3. Heier, Johan & Bales, Chris & Martin, Viktoria, 2015. "Combining thermal energy storage with buildings – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1305-1325.
    4. Ibrahim, Nasiru I. & Al-Sulaiman, Fahad A. & Rahman, Saidur & Yilbas, Bekir S. & Sahin, Ahmet Z., 2017. "Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 26-50.
    5. AL-Saadi, Saleh Nasser & Zhai, Zhiqiang (John), 2013. "Modeling phase change materials embedded in building enclosure: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 659-673.
    6. Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
    7. Pirasaci, Tolga & Wickramaratne, Chatura & Moloney, Francesca & Yogi Goswami, D. & Stefanakos, Elias, 2017. "Dynamics of phase change in a vertical PCM capsule in the presence of radiation at high temperatures," Applied Energy, Elsevier, vol. 206(C), pages 498-506.
    8. Dutil, Yvan & Rousse, Daniel & Lassue, Stéphane & Zalewski, Laurent & Joulin, Annabelle & Virgone, Joseph & Kuznik, Frédéric & Johannes, Kevyn & Dumas, Jean-Pierre & Bédécarrats, Jean-Pierre & Castell, 2014. "Modeling phase change materials behavior in building applications: Comments on material characterization and model validation," Renewable Energy, Elsevier, vol. 61(C), pages 132-135.
    9. Silva, Tiago & Vicente, Romeu & Rodrigues, Fernanda, 2016. "Literature review on the use of phase change materials in glazing and shading solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 515-535.
    10. Li, C. & Wang, R.Z., 2012. "Building integrated energy storage opportunities in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6191-6211.
    11. Alizadeh, M. & Sadrameli, S.M., 2016. "Development of free cooling based ventilation technology for buildings: Thermal energy storage (TES) unit, performance enhancement techniques and design considerations – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 619-645.
    12. Ma, Zhesong & Wang, Yanhui & Wang, Shuxin & Yang, Yanan, 2016. "Ocean thermal energy harvesting with phase change material for underwater glider," Applied Energy, Elsevier, vol. 178(C), pages 557-566.
    13. Rao, Zhonghao & Wang, Shuangfeng & Peng, Feifei & Zhang, Wei & Zhang, Yanlai, 2012. "Dissipative particle dynamics investigation of microencapsulated thermal energy storage phase change materials," Energy, Elsevier, vol. 44(1), pages 805-812.
    14. Soares, N. & Gaspar, A.R. & Santos, P. & Costa, J.J., 2015. "Experimental study of the heat transfer through a vertical stack of rectangular cavities filled with phase change materials," Applied Energy, Elsevier, vol. 142(C), pages 192-205.
    15. Klimeš, Lubomír & Mauder, Tomáš & Charvát, Pavel & Štětina, Josef, 2018. "Front tracking in modelling of latent heat thermal energy storage: Assessment of accuracy and efficiency, benchmarking and GPU-based acceleration," Energy, Elsevier, vol. 155(C), pages 297-311.
    16. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
    17. Kenisarin, Murat & Mahkamov, Khamid, 2016. "Passive thermal control in residential buildings using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 371-398.
    18. Zhou, Zhihua & Zhang, Zhiming & Zuo, Jian & Huang, Ke & Zhang, Liying, 2015. "Phase change materials for solar thermal energy storage in residential buildings in cold climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 692-703.
    19. Bastani, Arash & Haghighat, Fariborz & Kozinski, Janusz, 2014. "Designing building envelope with PCM wallboards: Design tool development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 554-562.
    20. Al-abidi, Abduljalil A. & Bin Mat, Sohif & Sopian, K. & Sulaiman, M.Y. & Mohammed, Abdulrahman Th., 2013. "CFD applications for latent heat thermal energy storage: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 353-363.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:7:p:5355-5362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.