IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v15y2011i6p2940-2959.html
   My bibliography  Save this article

A renewable energy solution for Highfield Campus of University of Southampton

Author

Listed:
  • Kalkan, Naci
  • Bercin, Kutalmis
  • Cangul, Ozcel
  • Morales, Mario Gonzales
  • Saleem, Magdoom Mohammed Kulam Mohamed
  • Marji, Izzat
  • Metaxa, Angeliki
  • Tsigkogianni, Eleni

Abstract

In today's world where the global warming is one of the biggest problems for mankind, sustainable energy generation is becoming more and more important every day. This project focuses on the Highfield Campus of the University of Southampton and aims to achieve a more sustainable way of heat and electrical energy generation in order to help protect the environment. The electrical energy to the Highfield Campus is provided from the national grid which primarily burns fossil fuels whereas the heat energy is mainly obtained by burning natural gas. None of these methods are sustainable and are major sources of greenhouse gas emissions. As the project objective, more sustainable ways of energy production in the campus are investigated, analysed and discussed in this report. For this purpose, data acquisition is done by obtaining the energy consumption figures of the buildings within the campus. On the other hand, feasibility studies for various types of renewable energy sources are conducted revealing their potential contributions and applicability. All the data are then worked through to design more sustainable energy systems sticking to the project aims. The resultant electrical and heat energy generation designs satisfy the project objective by utilizing alternative energy sources and reducing the greenhouse gas emissions of the campus, even though not in huge amounts. The results obtained are satisfactory in the sense that the proposed designs are both technically and economically feasible. To conclude, these designs proposed in this project can be the first steps toward a more sustainable campus and get even more tempting with relevant technological improvements in the future.

Suggested Citation

  • Kalkan, Naci & Bercin, Kutalmis & Cangul, Ozcel & Morales, Mario Gonzales & Saleem, Magdoom Mohammed Kulam Mohamed & Marji, Izzat & Metaxa, Angeliki & Tsigkogianni, Eleni, 2011. "A renewable energy solution for Highfield Campus of University of Southampton," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2940-2959, August.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:6:p:2940-2959
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032111000888
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chua, K.J. & Chou, S.K. & Yang, W.M., 2010. "Advances in heat pump systems: A review," Applied Energy, Elsevier, vol. 87(12), pages 3611-3624, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rosiek, Sabina & Batlles, Francisco Javier, 2013. "Renewable energy solutions for building cooling, heating and power system installed in an institutional building: Case study in southern Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 147-168.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new waste heat district heating system with combined heat and power (CHP) based on ejector heat exchangers and absorption heat pumps," Energy, Elsevier, vol. 69(C), pages 516-524.
    2. Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.
    3. Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.
    4. Jie, Ji & Jingyong, Cai & Wenzhu, Huang & Yan, Feng, 2015. "Experimental study on the performance of solar-assisted multi-functional heat pump based on enthalpy difference lab with solar simulator," Renewable Energy, Elsevier, vol. 75(C), pages 381-388.
    5. Waheed, M.A. & Oni, A.O. & Adejuyigbe, S.B. & Adewumi, B.A. & Fadare, D.A., 2014. "Performance enhancement of vapor recompression heat pump," Applied Energy, Elsevier, vol. 114(C), pages 69-79.
    6. Roberto Bruno & Francesco Nicoletti & Giorgio Cuconati & Stefania Perrella & Daniela Cirone, 2020. "Performance Indexes of an Air-Water Heat Pump Versus the Capacity Ratio: Analysis by Means of Experimental Data," Energies, MDPI, vol. 13(13), pages 1-19, July.
    7. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new ejector heat exchanger based on an ejector heat pump and a water-to-water heat exchanger," Applied Energy, Elsevier, vol. 121(C), pages 245-251.
    8. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    9. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    10. Li, Qiyuan & Shirazi, Ali & Zheng, Cheng & Rosengarten, Gary & Scott, Jason A. & Taylor, Robert A., 2016. "Energy concentration limits in solar thermal heating applications," Energy, Elsevier, vol. 96(C), pages 253-267.
    11. Bahman, Ammar & Rosario, Luis & Rahman, Muhammad M., 2012. "Analysis of energy savings in a supermarket refrigeration/HVAC system," Applied Energy, Elsevier, vol. 98(C), pages 11-21.
    12. Changqing Liu & Ronghua Wu & Hao Yu & Hao Zhan & Long Xu, 2022. "Heat Transfer Characteristics of Cold Water Phase-Change Heat Exchangers under Active Icing Conditions," Energies, MDPI, vol. 15(19), pages 1-18, October.
    13. Antonijevic, Dragi & Komatina, Mirko, 2011. "Sustainable sub-geothermal heat pump heating in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3534-3538.
    14. Kayaci, Nurullah, 2020. "Energy and exergy analysis and thermo-economic optimization of the ground source heat pump integrated with radiant wall panel and fan-coil unit with floor heating or radiator," Renewable Energy, Elsevier, vol. 160(C), pages 333-349.
    15. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    16. Aste, Niccolò & Adhikari, R.S. & Manfren, Massimiliano, 2013. "Cost optimal analysis of heat pump technology adoption in residential reference buildings," Renewable Energy, Elsevier, vol. 60(C), pages 615-624.
    17. Treichel, Calene & Cruickshank, Cynthia A., 2021. "Energy analysis of heat pump water heaters coupled with air-based solar thermal collectors in Canada and the United States," Energy, Elsevier, vol. 221(C).
    18. Cai, Jingyong & Ji, Jie & Wang, Yunyun & Huang, Wenzhu, 2017. "Operation characteristics of a novel dual source multi-functional heat pump system under various working modes," Applied Energy, Elsevier, vol. 194(C), pages 236-246.
    19. Balghouthi, M. & Chahbani, M.H. & Guizani, A., 2012. "Investigation of a solar cooling installation in Tunisia," Applied Energy, Elsevier, vol. 98(C), pages 138-148.
    20. Mohamed, Elamin & Riffat, Saffa & Omer, Siddig & Zeinelabdein, Rami, 2019. "A comprehensive investigation of using mutual air and water heating in multi-functional DX-SAMHP for moderate cold climate," Renewable Energy, Elsevier, vol. 130(C), pages 582-600.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:6:p:2940-2959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.