IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v149y2021ics1364032121006766.html
   My bibliography  Save this article

Molecular simulation of gas adsorption in shale nanopores: A critical review

Author

Listed:
  • Wang, Tianyu
  • Tian, Shouceng
  • Li, Gensheng
  • Zhang, Liyuan
  • Sheng, Mao
  • Ren, Wenxi

Abstract

Shale gas is a promising alternative energy due to the advantages of large reserves and high energy efficiency. The amount of adsorbed gas in shale nanopores is a significant reason that shale gas maintains long-term stable production. Molecular simulation is an important tool for analyzing the adsorption mechanisms and understanding the gas adsorption behavior on shales at the microscopic level intuitively and accurately. In this review, we briefly summarize the molecular models of shale inorganic minerals, organic matter and composite shale models with organic and inorganic regions. We also provide a comprehensive overview of shale gas adsorption and analyze in detail its microscopic mechanism on these molecular models. Finally, we discuss the existing challenges and perspectives to promote the future development of shale gas production. An accurate description of shale compositions and structures, as well as adsorbates, is crucial for molecular simulation of shale gas adsorption.

Suggested Citation

  • Wang, Tianyu & Tian, Shouceng & Li, Gensheng & Zhang, Liyuan & Sheng, Mao & Ren, Wenxi, 2021. "Molecular simulation of gas adsorption in shale nanopores: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
  • Handle: RePEc:eee:rensus:v:149:y:2021:i:c:s1364032121006766
    DOI: 10.1016/j.rser.2021.111391
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121006766
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111391?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Hui & Chen, Li & Qu, Zhiguo & Yin, Ying & Kang, Qinjun & Yu, Bo & Tao, Wen-Quan, 2020. "Modeling of multi-scale transport phenomena in shale gas production — A critical review," Applied Energy, Elsevier, vol. 262(C).
    2. J. David Hughes, 2013. "A reality check on the shale revolution," Nature, Nature, vol. 494(7437), pages 307-308, February.
    3. Thomas Lee & Lydéric Bocquet & Benoit Coasne, 2016. "Activated desorption at heterogeneous interfaces and long-time kinetics of hydrocarbon recovery from nanoporous media," Nature Communications, Nature, vol. 7(1), pages 1-10, September.
    4. Zhang, Kaiqiang & Jia, Na & Li, Songyan & Liu, Lirong, 2019. "Static and dynamic behavior of CO2 enhanced oil recovery in shale reservoirs: Experimental nanofluidics and theoretical models with dual-scale nanopores," Applied Energy, Elsevier, vol. 255(C).
    5. Kerstin Falk & Benoit Coasne & Roland Pellenq & Franz-Josef Ulm & Lydéric Bocquet, 2015. "Subcontinuum mass transport of condensed hydrocarbons in nanoporous media," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    6. Huang, Liang & Ning, Zhengfu & Wang, Qing & Zhang, Wentong & Cheng, Zhilin & Wu, Xiaojun & Qin, Huibo, 2018. "Effect of organic type and moisture on CO2/CH4 competitive adsorption in kerogen with implications for CO2 sequestration and enhanced CH4 recovery," Applied Energy, Elsevier, vol. 210(C), pages 28-43.
    7. Ju, Yang & He, Jian & Chang, Elliot & Zheng, Liange, 2019. "Quantification of CH4 adsorption capacity in kerogen-rich reservoir shales: An experimental investigation and molecular dynamic simulation," Energy, Elsevier, vol. 170(C), pages 411-422.
    8. Sasha Stankovich & Dmitriy A. Dikin & Geoffrey H. B. Dommett & Kevin M. Kohlhaas & Eric J. Zimney & Eric A. Stach & Richard D. Piner & SonBinh T. Nguyen & Rodney S. Ruoff, 2006. "Graphene-based composite materials," Nature, Nature, vol. 442(7100), pages 282-286, July.
    9. Jing Yang & Javin Hatcherian & Paul C. Hackley & Andrew E. Pomerantz, 2017. "Nanoscale geochemical and geomechanical characterization of organic matter in shale," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    10. Chen, Yuntian & Jiang, Su & Zhang, Dongxiao & Liu, Chaoyang, 2017. "An adsorbed gas estimation model for shale gas reservoirs via statistical learning," Applied Energy, Elsevier, vol. 197(C), pages 327-341.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Bo & Mohammadi, Mohammad-Reza & Ma, Zhongliang & Bai, Longhui & Wang, Liu & Wen, Zhigang & Liu, Yan & Morta, Hem Bahadur & Hemmati-Sarapardeh, Abdolhossein & Ostadhassan, Mehdi, 2023. "Experimental investigation and intelligent modeling of pore structure changes in type III kerogen-rich shale artificially matured by hydrous and anhydrous pyrolysis," Energy, Elsevier, vol. 282(C).
    2. Cui, Ruikang & Sun, Jianmeng & Liu, Haitao & Dong, Huaimin & Yan, WeiChao, 2024. "Pore structure and gas adsorption characteristics in stress-loaded shale on molecular simulation," Energy, Elsevier, vol. 286(C).
    3. Guang, Wenfeng & Zhang, Zhenyu & Zhang, Lei & Ranjith, P.G. & Hao, Shengpeng & Liu, Xiaoqian, 2023. "Confinement effect on transport diffusivity of adsorbed CO2–CH4 mixture in coal nanopores for CO2 sequestration and enhanced CH4 recovery," Energy, Elsevier, vol. 278(PA).
    4. Tao, Huayu & Qian, Xi & Zhou, Yi & Cheng, Hongfei, 2022. "Research progress of clay minerals in carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Hui & Chen, Li & Qu, Zhiguo & Yin, Ying & Kang, Qinjun & Yu, Bo & Tao, Wen-Quan, 2020. "Modeling of multi-scale transport phenomena in shale gas production — A critical review," Applied Energy, Elsevier, vol. 262(C).
    2. Yang, Xue & Chen, Zeqin & Liu, Xiaoqiang & Xue, Zhiyu & Yue, Fen & Wen, Junjie & Li, Meijun & Xue, Ying, 2022. "Correction of gas adsorption capacity in quartz nanoslit and its application in recovering shale gas resources by CO2 injection: A molecular simulation," Energy, Elsevier, vol. 240(C).
    3. Huang, Xianfu & Zhao, Ya-Pu, 2023. "Evolution of pore structure and adsorption-desorption in oil shale formation rocks after compression," Energy, Elsevier, vol. 278(PA).
    4. Zhang, Xiaoying & Ma, Funing & Yin, Shangxian & Wallace, Corey D & Soltanian, Mohamad Reza & Dai, Zhenxue & Ritzi, Robert W. & Ma, Ziqi & Zhan, Chuanjun & Lü, Xiaoshu, 2021. "Application of upscaling methods for fluid flow and mass transport in multi-scale heterogeneous media: A critical review," Applied Energy, Elsevier, vol. 303(C).
    5. Guang, Wenfeng & Zhang, Zhenyu & Zhang, Lei & Ranjith, P.G. & Hao, Shengpeng & Liu, Xiaoqian, 2023. "Confinement effect on transport diffusivity of adsorbed CO2–CH4 mixture in coal nanopores for CO2 sequestration and enhanced CH4 recovery," Energy, Elsevier, vol. 278(PA).
    6. WeiGang Yu & Jiang Lei & Tengxi Wang & Wei Chen, 2019. "H 2 O 2 -Enhanced Shale Gas Recovery under Different Thermal Conditions," Energies, MDPI, vol. 12(11), pages 1-12, June.
    7. Li, Jing & Wu, Keliu & Chen, Zhangxin & Wang, Wenyang & Yang, Bin & Wang, Kun & Luo, Jia & Yu, Renjie, 2019. "Effects of energetic heterogeneity on gas adsorption and gas storage in geologic shale systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Zhan, Honglei & Wang, Yan & Chen, Mengxi & Chen, Ru & Zhao, Kun & Yue, Wenzheng, 2020. "An optical mechanism for detecting the whole pyrolysis process of oil shale," Energy, Elsevier, vol. 190(C).
    9. Cao, Gaohui & Jiang, Wenbin & Lin, Mian & Ji, Lili & Xu, Zhipeng & Zheng, Siping & Hao, Fang, 2021. "Mortar dynamic coupled model for calculating interface gas exchange between organic and inorganic matters of shale," Energy, Elsevier, vol. 236(C).
    10. Li, Jiawei & Sun, Chenhao, 2022. "Molecular insights on competitive adsorption and enhanced displacement effects of CO2/CH4 in coal for low-carbon energy technologies," Energy, Elsevier, vol. 261(PB).
    11. Jie Zhang & Xizhe Li & Weijun Shen & Shusheng Gao & Huaxun Liu & Liyou Ye & Feifei Fang, 2020. "Study of the Effect of Movable Water Saturation on Gas Production in Tight Sandstone Gas Reservoirs," Energies, MDPI, vol. 13(18), pages 1-14, September.
    12. Fu, Shenguang & Wang, Liang & Li, Shuohao & Ni, Sijia & Cheng, Yuanping & Zhang, Xiaolei & Liu, Shimin, 2024. "Re-thinking methane storage mechanism in highly metamorphic coalbed reservoirs — A molecular simulation considering organic components," Energy, Elsevier, vol. 293(C).
    13. Pandey, Mayank & Deshmukh, Kalim & Raman, Akhila & Asok, Aparna & Appukuttan, Saritha & Suman, G.R., 2024. "Prospects of MXene and graphene for energy storage and conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    14. Lei Pan & Ling Chen & Peng Cheng & Haifeng Gai, 2022. "Methane Storage Capacity of Permian Shales with Type III Kerogen in the Lower Yangtze Area, Eastern China," Energies, MDPI, vol. 15(5), pages 1-23, March.
    15. Wang, Yingli & Duan, Jialong & Zhao, Yuanyuan & He, Benlin & Tang, Qunwei, 2018. "Harvest rain energy by polyaniline-graphene composite films," Renewable Energy, Elsevier, vol. 125(C), pages 995-1002.
    16. Xuhua Gao & Junhong Yu & Xinchun Shang & Weiyao Zhu, 2023. "Investigation on Nonlinear Behaviors of Seepage in Deep Shale Gas Reservoir with Viscoelasticity," Energies, MDPI, vol. 16(17), pages 1-23, August.
    17. Xiangyu Meng & Chuntong Zhu & Xin Wang & Zehua Liu & Mengmeng Zhu & Kuibo Yin & Ran Long & Liuning Gu & Xinxing Shao & Litao Sun & Yueming Sun & Yunqian Dai & Yujie Xiong, 2023. "Hierarchical triphase diffusion photoelectrodes for photoelectrochemical gas/liquid flow conversion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Wenchao Liu & Yuejie Yang & Chengcheng Qiao & Chen Liu & Boyu Lian & Qingwang Yuan, 2023. "Progress of Seepage Law and Development Technologies for Shale Condensate Gas Reservoirs," Energies, MDPI, vol. 16(5), pages 1-30, March.
    19. Andres Soage & Ruben Juanes & Ignasi Colominas & Luis Cueto-Felgueroso, 2024. "Optimization of Financial Indicators in Shale-Gas Wells Combining Numerical Decline Curve Analysis and Economic Data Analysis," Energies, MDPI, vol. 17(4), pages 1-25, February.
    20. Jin, Xu & Wang, Xiaoqi & Yan, Weipeng & Meng, Siwei & Liu, Xiaodan & Jiao, Hang & Su, Ling & Zhu, Rukai & Liu, He & Li, Jianming, 2019. "Exploration and casting of large scale microscopic pathways for shale using electrodeposition," Applied Energy, Elsevier, vol. 247(C), pages 32-39.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:149:y:2021:i:c:s1364032121006766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.