IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v13y2009i6-7p1663-1668.html
   My bibliography  Save this article

Review of the membrane and bipolar plates materials for conventional and unitized regenerative fuel cells

Author

Listed:
  • Dihrab, Salwan S.
  • Sopian, K.
  • Alghoul, M.A.
  • Sulaiman, M.Y.

Abstract

Fuel cell or hydrogen systems offer the potential for clean, reliable and on-site energy generation. This article review current literature with the objective of identifying the latest development in membrane and bipolar plates for the conventional fuel cell and unitized regenerative fuel cell (URFC). The result shows that the choice of both the bipolar plates and the catalysts for URFC electrodes is a delicate task, for bipolar plate the corrosion in the oxygen side will be the major problem and for the electrodes a very good candidate for fuel cell mode will not function well in the electrolyser mode and therefore it is suggested that a compromise should be considered. It is recommended that aluminum, titanium or for best results titanium with a gold-coated layer is a suitable candidate as the bipolar plate and Pt/IrOX or Pt/Ru is suitable for an oxygen side catalyst in the URFC. For the conventional fuel cell the task is more easer because the corrosion problem is no more effective and thus the main goals for most of the studies was to concentrate on bipolar plate cost reduction, increase electrical conduction and reducing the platinum loading rate for catalyst.

Suggested Citation

  • Dihrab, Salwan S. & Sopian, K. & Alghoul, M.A. & Sulaiman, M.Y., 2009. "Review of the membrane and bipolar plates materials for conventional and unitized regenerative fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1663-1668, August.
  • Handle: RePEc:eee:rensus:v:13:y:2009:i:6-7:p:1663-1668
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(08)00167-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Unknown, 2004. "End Materials," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 19(4), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rocha, A. & Ferreira, R.B. & Falcão, D.S. & Pinto, A.M.F.R., 2023. "Experimental study on a unitized regenerative fuel cell operated in constant electrode mode: Effect of cell design and operating conditions," Renewable Energy, Elsevier, vol. 215(C).
    2. Mo, Jingke & Kang, Zhenye & Yang, Gaoqiang & Retterer, Scott T. & Cullen, David A. & Toops, Todd J. & Green, Johney B. & Zhang, Feng-Yuan, 2016. "Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting," Applied Energy, Elsevier, vol. 177(C), pages 817-822.
    3. dos Santos, Kenia Gabriela & Eckert, Caroline Thaís & De Rossi, Eduardo & Bariccatti, Reinaldo Aparecido & Frigo, Elisandro Pires & Lindino, Cleber Antonio & Alves, Helton José, 2017. "Hydrogen production in the electrolysis of water in Brazil, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 563-571.
    4. Wang, Yifei & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2016. "A review on unitized regenerative fuel cell technologies, part-A: Unitized regenerative proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 961-977.
    5. Khatib, F.N. & Wilberforce, Tabbi & Ijaodola, Oluwatosin & Ogungbemi, Emmanuel & El-Hassan, Zaki & Durrant, A. & Thompson, J. & Olabi, A.G., 2019. "Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 1-14.
    6. Bhosale, Amit C. & Rengaswamy, Raghunathan, 2019. "Interfacial contact resistance in polymer electrolyte membrane fuel cells: Recent developments and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    7. Hoque, M.M. & Hannan, M.A. & Mohamed, A. & Ayob, A., 2017. "Battery charge equalization controller in electric vehicle applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1363-1385.
    8. Wang, Yifei & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2017. "A review on unitized regenerative fuel cell technologies, part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 775-795.
    9. Zhou, Yu & Chen, Ben, 2023. "Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    10. Kang, Zhenye & Mo, Jingke & Yang, Gaoqiang & Li, Yifan & Talley, Derrick A. & Retterer, Scott T. & Cullen, David A. & Toops, Todd J. & Brady, Michael P. & Bender, Guido & Pivovar, Bryan S. & Green, Jo, 2017. "Thin film surface modifications of thin/tunable liquid/gas diffusion layers for high-efficiency proton exchange membrane electrolyzer cells," Applied Energy, Elsevier, vol. 206(C), pages 983-990.
    11. Oluwatosin Ijaodola & Emmanuel Ogungbemi & Fawwad Nisar. Khatib & Tabbi Wilberforce & Mohamad Ramadan & Zaki El Hassan & James Thompson & Abdul Ghani Olabi, 2018. "Evaluating the Effect of Metal Bipolar Plate Coating on the Performance of Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 11(11), pages 1-28, November.
    12. Paul, Biddyut & Andrews, John, 2017. "PEM unitised reversible/regenerative hydrogen fuel cell systems: State of the art and technical challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 585-599.
    13. Hannan, M.A. & Hoque, M.M. & Mohamed, A. & Ayob, A., 2017. "Review of energy storage systems for electric vehicle applications: Issues and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 771-789.
    14. Qiu, Diankai & Peng, Linfa & Lai, Xinmin & Ni, Meng & Lehnert, Werner, 2019. "Mechanical failure and mitigation strategies for the membrane in a proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    15. Hossein Pourrahmani & Majid Siavashi & Adel Yavarinasab & Mardit Matian & Nazanin Chitgar & Ligang Wang & Jan Van herle, 2022. "A Review on the Long-Term Performance of Proton Exchange Membrane Fuel Cells: From Degradation Modeling to the Effects of Bipolar Plates, Sealings, and Contaminants," Energies, MDPI, vol. 15(14), pages 1-30, July.
    16. Bhosale, Amit C. & Ghosh, Prakash C. & Assaud, Loïc, 2020. "Preparation methods of membrane electrode assemblies for proton exchange membrane fuel cells and unitized regenerative fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hatayama, Hiroki & Daigo, Ichiro & Matsuno, Yasunari & Adachi, Yoshihiro, 2012. "Evolution of aluminum recycling initiated by the introduction of next-generation vehicles and scrap sorting technology," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 8-14.
    2. Ashley Fly & Kyoungyoun Kim & John Gordon & Daniel Butcher & Rui Chen, 2019. "Liquid Water Transport in Porous Metal Foam Flow-Field Fuel Cells: A Two-Phase Numerical Modelling and Ex-Situ Experimental Study," Energies, MDPI, vol. 12(7), pages 1-14, March.
    3. Yuan, Wei & Tang, Yong & Yang, Xiaojun & Wan, Zhenping, 2012. "Porous metal materials for polymer electrolyte membrane fuel cells – A review," Applied Energy, Elsevier, vol. 94(C), pages 309-329.
    4. Sunil Herat, 2008. "Environmental impacts and use of brominated flame retardants in electrical and electronic equipment," Environment Systems and Decisions, Springer, vol. 28(4), pages 348-357, December.
    5. repec:idb:brikps:388 is not listed on IDEAS
    6. Cheng, Kun & Ogle, Stephen M. & Parton, William J. & Pan, Genxing, 2013. "Predicting methanogenesis from rice paddies using the DAYCENT ecosystem model," Ecological Modelling, Elsevier, vol. 261, pages 19-31.
    7. Carton, J.G. & Olabi, A.G., 2017. "Three-dimensional proton exchange membrane fuel cell model: Comparison of double channel and open pore cellular foam flow plates," Energy, Elsevier, vol. 136(C), pages 185-195.
    8. Shubham Vaishnav & Ankit Agarwal & K. A. Desai, 2020. "Machine learning-based instantaneous cutting force model for end milling operation," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1353-1366, August.
    9. Awin, Yussef & Dukhan, Nihad, 2019. "Experimental performance assessment of metal-foam flow fields for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    10. Iakovou, E. & Moussiopoulos, N. & Xanthopoulos, A. & Achillas, Ch. & Michailidis, N. & Chatzipanagioti, M. & Koroneos, C. & Bouzakis, K.-D. & Kikis, V., 2009. "A methodological framework for end-of-life management of electronic products," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 329-339.
    11. Willem Haanstra & Alberto Martinetti & Jan Braaksma & Leo van Dongen, 2020. "Design of a Framework for Integrating Environmentally Sustainable Design Principles and Requirements in Train Modernization Projects," Sustainability, MDPI, vol. 12(15), pages 1-20, July.
    12. Yean-Der Kuan & Shin-Min Lee & Ming-Feng Sung, 2014. "Development of a Direct Methanol Fuel Cell with Lightweight Disc Type Current Collectors," Energies, MDPI, vol. 7(5), pages 1-12, May.
    13. Ali A. Hmad & Nihad Dukhan, 2021. "Cooling Design for PEM Fuel-Cell Stacks Employing Air and Metal Foam: Simulation and Experiment," Energies, MDPI, vol. 14(9), pages 1-19, May.
    14. Nurezayana Zainal & Azlan Mohd Zain & Nor Haizan Mohamed Radzi & Muhamad Razib Othman, 2016. "Glowworm swarm optimization (GSO) for optimization of machining parameters," Journal of Intelligent Manufacturing, Springer, vol. 27(4), pages 797-804, August.
    15. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S. & Sharma, Sandeep, 2021. "Energy optimization in wheat establishment following rice residue management with Happy Seeder technology for reduced carbon footprints in north-western India," Energy, Elsevier, vol. 230(C).
    16. Adloo, Ali & Sadeghi, Morteza & Masoomi, Mahmood & Pazhooh, Hadi Najafi, 2016. "High performance polymeric bipolar plate based on polypropylene/graphite/graphene/nano-carbon black composites for PEM fuel cells," Renewable Energy, Elsevier, vol. 99(C), pages 867-874.
    17. Cruz-Rivera, Reynaldo & Ertel, Jürgen, 2009. "Reverse logistics network design for the collection of End-of-Life Vehicles in Mexico," European Journal of Operational Research, Elsevier, vol. 196(3), pages 930-939, August.
    18. Frank Schultmann & Bernd Engels & Otto Rentz, 2003. "Closed-Loop Supply Chains for Spent Batteries," Interfaces, INFORMS, vol. 33(6), pages 57-71, December.
    19. Chowdhury, Mohammad Ziauddin & Timurkutluk, Bora, 2018. "Transport phenomena of convergent and divergent serpentine flow fields for PEMFC," Energy, Elsevier, vol. 161(C), pages 104-117.
    20. Myo-Eun Kim & Young-Jun Sohn, 2020. "Study on Polymer Electrolyte Fuel Cells with Nonhumidification Using Metal Foam in Dead-Ended Operation," Energies, MDPI, vol. 13(5), pages 1-12, March.
    21. Cheng Wang & Shubo Wang & Linfa Peng & Junliang Zhang & Zhigang Shao & Jun Huang & Chunwen Sun & Minggao Ouyang & Xiangming He, 2016. "Recent Progress on the Key Materials and Components for Proton Exchange Membrane Fuel Cells in Vehicle Applications," Energies, MDPI, vol. 9(8), pages 1-39, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:13:y:2009:i:6-7:p:1663-1668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.