IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v13y2009i1p67-84.html
   My bibliography  Save this article

Review and modelling the systems of transmission concentrated solar energy via optical fibres

Author

Listed:
  • Kandilli, C.
  • Ulgen, K.

Abstract

The aims of this study are to optimize the coupling of a low-cost offset paraboloidal dish, which concentrates direct solar irradiance with dual axes tracking component, and the fibre optic bundle (FOB), which transmits concentrated solar energy; to review previous studies on the transmission of concentrated solar energy via optical fibres (TCSEvOF) by classifying according to their purposes; to present a mathematical model for coupling symmetrical paraboloidal dish and FOB, and a modified model for optimum coupling of offset paraboloidal dish proposed in our study, taking into account the parameters of the dish and dispersion effect; to apply the models to symmetrical and offset paraboloidal dish under the same conditions; and to compare the annual output power obtained. Optical efficiency of the whole system was calculated as 68% in optimum condition, but it was found to be 63% for the system proposed. Overall system efficiency was found to be 59%. It was found that offset paraboloidal dish produced much more energy than the symmetrical one does when comparing under the same conditions. The difference of monthly average annual obtainable power was calculated as 0.82%. The monthly average annual power gained from the offset paraboloidal dish proposed was computed as 1041.6Â kW to per square metre.

Suggested Citation

  • Kandilli, C. & Ulgen, K., 2009. "Review and modelling the systems of transmission concentrated solar energy via optical fibres," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 67-84, January.
  • Handle: RePEc:eee:rensus:v:13:y:2009:i:1:p:67-84
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(07)00108-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ono, Eiichi & Cuello, Joel L, 2004. "Design parameters of solar concentrating systems for CO2-mitigating algal photobioreactors," Energy, Elsevier, vol. 29(9), pages 1651-1657.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mendoza Castellanos, Luis Sebastian & Carrillo Caballero, Gaylord Enrique & Melian Cobas, Vladimir Rafael & Silva Lora, Electo Eduardo & Martinez Reyes, Arnaldo Martin, 2017. "Mathematical modeling of the geometrical sizing and thermal performance of a Dish/Stirling system for power generation," Renewable Energy, Elsevier, vol. 107(C), pages 23-35.
    2. Irfan Ullah & Allen Jong-Woei Whang, 2015. "Development of Optical Fiber-Based Daylighting System and Its Comparison," Energies, MDPI, vol. 8(7), pages 1-17, July.
    3. Sidik, Muhammad Abu Bakar & Shahroom, Hamizah Binti & Salam, Zainal & Buntat, Zokafle & Nawawi, Zainuddin & Ahmad, Hussein & Jambak, Muhammad ’Irfan & Arief, Yanuar Zulardiansyah, 2015. "Lightning monitoring system for sustainable energy supply: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 710-725.
    4. Kunhao Liu & Lianglin Zou & Yuanlong Li & Kai Wang & Haiyu Wang & Jifeng Song, 2023. "Measurement and Analysis of Light Leakage in Plastic Optical Fiber Daylighting System," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    5. Xia, Longyu & Wei, Gaosheng & Wang, Gang & Cui, Liu & Du, Xiaoze, 2023. "Research on combined solar fiber lighting and photovoltaic power generation system based on the spectral splitting technology," Applied Energy, Elsevier, vol. 333(C).
    6. Sreelakshmi, Kavuthimadathil & Ramamurthy, K., 2022. "Review on fibre-optic-based daylight enhancement systems in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    7. Richard P. Fisher & Allan Lewandowski & Tesfayohanes W. Yacob & Barbara J. Ward & Lauren M. Hafford & Ryan B. Mahoney & Cori J. Oversby & Dragan Mejic & Dana H. Hauschulz & R. Scott Summers & Karl G. , 2021. "Solar Thermal Processing to Disinfect Human Waste," Sustainability, MDPI, vol. 13(9), pages 1-16, April.
    8. Madeti, Siva Ramakrishna & Singh, S.N., 2017. "Monitoring system for photovoltaic plants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1180-1207.
    9. Shen, Chao & Lv, Guoquan & Wei, Shen & Zhang, Chunxiao & Ruan, Changyun, 2020. "Investigating the performance of a novel solar lighting/heating system using spectrum-sensitive nanofluids," Applied Energy, Elsevier, vol. 270(C).
    10. Kandilli, Canan & Külahlı, Gürhan, 2017. "Performance analysis of a concentrated solar energy for lighting-power generation combined system based on spectral beam splitting," Renewable Energy, Elsevier, vol. 101(C), pages 713-727.
    11. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    12. Han, Jingyang & Li, Haoyue & Li, Yong & Hou, Shiqi, 2023. "Spectral splitting solar energy transfer in small-diameter multimode optical fiber based on two-stage concentration," Renewable Energy, Elsevier, vol. 207(C), pages 47-59.
    13. Han, H.J. & Jeon, Y.I. & Lim, S.H. & Kim, W.W. & Chen, K., 2010. "New developments in illumination, heating and cooling technologies for energy-efficient buildings," Energy, Elsevier, vol. 35(6), pages 2647-2653.
    14. Song, Jifeng & Yang, Yongping & Zhu, Yong & Jin, Zhou, 2013. "A high precision tracking system based on a hybrid strategy designed for concentrated sunlight transmission via fibers," Renewable Energy, Elsevier, vol. 57(C), pages 12-19.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, S.P. & Singh, Priyanka, 2014. "Effect of CO2 concentration on algal growth: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 172-179.
    2. Seyed Hosseini, Nekoo & Shang, Helen & Scott, John Ashley, 2018. "Optimization of microalgae-sourced lipids production for biodiesel in a top-lit gas-lift bioreactor using response surface methodology," Energy, Elsevier, vol. 146(C), pages 47-56.
    3. Raeisossadati, Mohammadjavad & Moheimani, Navid Reza & Parlevliet, David, 2019. "Luminescent solar concentrator panels for increasing the efficiency of mass microalgal production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 47-59.
    4. Coşgun, Ahmet & Günay, M. Erdem & Yıldırım, Ramazan, 2021. "Exploring the critical factors of algal biomass and lipid production for renewable fuel production by machine learning," Renewable Energy, Elsevier, vol. 163(C), pages 1299-1317.
    5. Pires, J.C.M. & Alvim-Ferraz, M.C.M. & Martins, F.G. & Simões, M., 2012. "Carbon dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3043-3053.
    6. Vasumathi, K.K. & Premalatha, M. & Subramanian, P., 2012. "Parameters influencing the design of photobioreactor for the growth of microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5443-5450.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:13:y:2009:i:1:p:67-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.