Heat transfer intensification of jet impingement using exciting jets - A comprehensive review
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2020.110684
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Han, Wanlong & Yan, Peigang & Han, Wanjin & He, Yurong, 2015. "Design of wind turbines with shroud and lobed ejectors for efficient utilization of low-grade wind energy," Energy, Elsevier, vol. 89(C), pages 687-701.
- Gilmore, Nicholas & Timchenko, Victoria & Menictas, Chris, 2018. "Microchannel cooling of concentrator photovoltaics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1041-1059.
- Nadda, Rahul & Kumar, Anil & Maithani, Rajesh, 2018. "Efficiency improvement of solar photovoltaic/solar air collectors by using impingement jets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 331-353.
- Huang, X.Q. & Leung, C.W. & Chan, C.K. & Probert, S.D., 2006. "Thermal characteristics of a premixed impinging circular laminar-flame jet with induced swirl," Applied Energy, Elsevier, vol. 83(4), pages 401-411, April.
- Kapusta, Łukasz Jan & Shuang, Chen & Aldén, Marcus & Li, Zhongshan, 2020. "Structures of inverse jet flames stabilized on a coaxial burner," Energy, Elsevier, vol. 193(C).
- Chauhan, Ranchan & Singh, Tej & Thakur, N.S. & Kumar, Nitin & Kumar, Raj & Kumar, Anil, 2018. "Heat transfer augmentation in solar thermal collectors using impinging air jets: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3179-3190.
- Abo-Zahhad, Essam M. & Ookawara, Shinichi & Radwan, Ali & El-Shazly, A.H. & Elkady, M.F., 2019. "Numerical analyses of hybrid jet impingement/microchannel cooling device for thermal management of high concentrator triple-junction solar cell," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liaqat Hussain & Muhammad Mahabat Khan & Manzar Masud & Fawad Ahmed & Zabdur Rehman & Łukasz Amanowicz & Krzysztof Rajski, 2021. "Heat Transfer Augmentation through Different Jet Impingement Techniques: A State-of-the-Art Review," Energies, MDPI, vol. 14(20), pages 1-40, October.
- Fatih Selimefendigil & Mondher Hamzaoui & Abdelkarim Aydi & Badr M. Alshammari & Lioua Kolsi, 2022. "Hybrid Nano-Jet Impingement Cooling of Double Rotating Cylinders Immersed in Porous Medium," Mathematics, MDPI, vol. 11(1), pages 1-17, December.
- Wen Wang & Yan Yan & Yeqi Zhou & Jiahuan Cui, 2022. "Review of Advanced Effusive Cooling for Gas Turbine Blades," Energies, MDPI, vol. 15(22), pages 1-28, November.
- Fatih Selimefendigil & Hakan F. Oztop & Ali J. Chamkha, 2021. "Jet Impingement Heat Transfer of Confined Single and Double Jets with Non-Newtonian Power Law Nanofluid under the Inclined Magnetic Field Effects for a Partly Curved Heated Wall," Sustainability, MDPI, vol. 13(9), pages 1-23, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Maithani, Rajesh & Sharma, Sachin & Kumar, Anil, 2021. "Thermo-hydraulic and exergy analysis of inclined impinging jets on absorber plate of solar air heater," Renewable Energy, Elsevier, vol. 179(C), pages 84-95.
- Fahad Ghallab Al-Amri & Taher Maatallah & Richu Zachariah & Ahmed T. Okasha & Abdullah Khalid Alghamdi, 2022. "Enhanced Net Channel Based-Heat Sink Designs for Cooling of High Concentration Photovoltaic (HCPV) Systems in Dammam City," Sustainability, MDPI, vol. 14(7), pages 1-22, March.
- Abou-Ziyan, Hosny & Ibrahim, Mohammed & Abdel-Hameed, Hala, 2020. "Performance modeling and analysis of high-concentration multi-junction photovoltaics using advanced hybrid cooling systems," Applied Energy, Elsevier, vol. 269(C).
- Hu, Jianjun & Guo, Meng & Guo, Jinyong & Zhang, Guangqiu & Zhang, Yuwen, 2020. "Numerical and experimental investigation of solar air collector with internal swirling flow," Renewable Energy, Elsevier, vol. 162(C), pages 2259-2271.
- Cameron, William James & Reddy, K. Srinivas & Mallick, Tapas Kumar, 2022. "Review of high concentration photovoltaic thermal hybrid systems for highly efficient energy cogeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
- Chen, Liang & Deng, Daxiang & Ma, Qixian & Yao, Yingxue & Xu, Xinhai, 2022. "Performance evaluation of high concentration photovoltaic cells cooled by microchannels heat sink with serpentine reentrant microchannels," Applied Energy, Elsevier, vol. 309(C).
- Mohammadpour, Javad & Salehi, Fatemeh & Sheikholeslami, Mohsen & Lee, Ann, 2022. "A computational study on nanofluid impingement jets in thermal management of photovoltaic panel," Renewable Energy, Elsevier, vol. 189(C), pages 970-982.
- Chauhan, Ranchan & Kim, Sung Chul, 2019. "Effective efficiency distribution characteristics in protruded/dimpled-arc plate solar thermal collector," Renewable Energy, Elsevier, vol. 138(C), pages 955-963.
- Shaikh Zishan & Altaf Hossain Molla & Haroon Rashid & Kok Hoe Wong & Ahmad Fazlizan & Molla Shahadat Hossain Lipu & Mohd Tariq & Omar Mutab Alsalami & Mahidur R. Sarker, 2023. "Comprehensive Analysis of Kinetic Energy Recovery Systems for Efficient Energy Harnessing from Unnaturally Generated Wind Sources," Sustainability, MDPI, vol. 15(21), pages 1-18, October.
- Islam, Kazi & Riggs, Brian & Ji, Yaping & Robertson, John & Spitler, Christopher & Romanin, Vince & Codd, Daniel & Escarra, Matthew D., 2019. "Transmissive microfluidic active cooling for concentrator photovoltaics," Applied Energy, Elsevier, vol. 236(C), pages 906-915.
- Asmaa Ahmed & Katie Shanks & Senthilarasu Sundaram & Tapas Kumar Mallick, 2020. "Theoretical Investigation of the Temperature Limits of an Actively Cooled High Concentration Photovoltaic System," Energies, MDPI, vol. 13(8), pages 1-10, April.
- Karolina Papis-Frączek & Krzysztof Sornek, 2022. "A Review on Heat Extraction Devices for CPVT Systems with Active Liquid Cooling," Energies, MDPI, vol. 15(17), pages 1-49, August.
- Xie, Kai & Cui, Yunjing & Qiu, Xingqi & Wang, Jianxin, 2020. "Experimental study on flame characteristics and air entrainment of diesel horizontal spray burners at two different atmospheric pressures," Energy, Elsevier, vol. 211(C).
- Khan, Shoukat Alim & Bicer, Yusuf & Al-Ghamdi, Sami G. & Koç, Muammer, 2020. "Performance evaluation of self-cooling concentrating photovoltaics systems using nucleate boiling heat transfer," Renewable Energy, Elsevier, vol. 160(C), pages 1081-1095.
- Peng, Jiangbo & Gao, Long & Yu, Xin & Qin, Fei & Liu, Bing & Cao, Zhen & Wu, Guohua & Han, Minghong, 2022. "Combustion oscillation characteristics of a supersonic ethylene jet flame using high-speed planar laser-induced fluorescence and dynamic mode decomposition," Energy, Elsevier, vol. 239(PD).
- Shang, Fengju & Hu, Longhua & Sun, Xiepeng & Wang, Qiang & Palacios, Adriana, 2017. "Flame downwash length evolution of non-premixed gaseous fuel jets in cross-flow: Experiments and a new correlation," Applied Energy, Elsevier, vol. 198(C), pages 99-107.
- Jan Wajs & Michał Bajor & Dariusz Mikielewicz, 2019. "Thermal-Hydraulic Studies on the Shell-and-Tube Heat Exchanger with Minijets," Energies, MDPI, vol. 12(17), pages 1-12, August.
- Rashidi, Saman & Hormozi, Faramarz & Sundén, Bengt & Mahian, Omid, 2019. "Energy saving in thermal energy systems using dimpled surface technology – A review on mechanisms and applications," Applied Energy, Elsevier, vol. 250(C), pages 1491-1547.
- Elwekeel, Fifi N.M. & E. F. Nasr, Abdel-Atty & I. Radwan, Momen & I.A. Aly, Wael, 2024. "Influence of impingement jet designs on solar air collector performance," Renewable Energy, Elsevier, vol. 221(C).
More about this item
Keywords
Jet impingement; Heat transfer intensification; Turbulent intensity; Fluid flow; Passive self-exciting jets; Active exciting jets;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:139:y:2021:i:c:s1364032120309680. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.