IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v131y2020ics1364032120302823.html
   My bibliography  Save this article

Sugar transporters from industrial fungi: Key to improving second-generation ethanol production

Author

Listed:
  • Nogueira, Karoline Maria Vieira
  • Mendes, Vanessa
  • Carraro, Cláudia Batista
  • Taveira, Iasmin Cartaxo
  • Oshiquiri, Letícia Harumi
  • Gupta, Vijai K.
  • Silva, Roberto N.

Abstract

Second-generation ethanol (2G ethanol) has emerged as a promising alternative to fossil fuels owing to the usage of lignocellulosic biomass (LCB) as feedstock. LCB is mainly composed of cellulose, hemicellulose, and lignin. Biochemical conversion of LCB into ethanol involves four significant steps including pre-treatment, enzymatic hydrolysis, fermentation, and distillation. The major bottleneck to economically feasible 2G ethanol production lies in saccharification and fermentation steps. Lignocellulolytic fungi represent the major commercial sources of biomass-degrading carbohydrate-active enzymes (CAZymes) and possessa complex transporter system that is capable of effectively transporting thesugars released from holocellulosehydrolysates. In this context, an improved understanding of fungal sugar transporters can represent an important strategy to overcome the above-mentioned limitations. With this backdrop, the current paper reviews thesugar transporters from lignocellulolytic fungi, and their importance in 2G ethanol production.

Suggested Citation

  • Nogueira, Karoline Maria Vieira & Mendes, Vanessa & Carraro, Cláudia Batista & Taveira, Iasmin Cartaxo & Oshiquiri, Letícia Harumi & Gupta, Vijai K. & Silva, Roberto N., 2020. "Sugar transporters from industrial fungi: Key to improving second-generation ethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
  • Handle: RePEc:eee:rensus:v:131:y:2020:i:c:s1364032120302823
    DOI: 10.1016/j.rser.2020.109991
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120302823
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.109991?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gaurav, N. & Sivasankari, S. & Kiran, GS & Ninawe, A. & Selvin, J., 2017. "Utilization of bioresources for sustainable biofuels: A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 205-214.
    2. Rastogi, Meenal & Shrivastava, Smriti, 2017. "Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 330-340.
    3. Carpio, Lucio Guido Tapia & Simone de Souza, Fábio, 2017. "Optimal allocation of sugarcane bagasse for producing bioelectricity and second generation ethanol in Brazil: Scenarios of cost reductions," Renewable Energy, Elsevier, vol. 111(C), pages 771-780.
    4. Suparmaniam, Uganeeswary & Lam, Man Kee & Uemura, Yoshimitsu & Lim, Jun Wei & Lee, Keat Teong & Shuit, Siew Hoong, 2019. "Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Yujian & Wang, Haoyu & Li, Haoyang & Han, Xue & Zhang, Mingyuan & Sun, Yan & Fan, Xudong & Tu, Ren & Zeng, Yimin & Xu, Chunbao Charles & Xu, Xiwei, 2022. "Applications of catalysts in thermochemical conversion of biomass (pyrolysis, hydrothermal liquefaction and gasification): A critical review," Renewable Energy, Elsevier, vol. 196(C), pages 462-481.
    2. Mendiburu, Andrés Z. & Lauermann, Carlos H. & Hayashi, Thamy C. & Mariños, Diego J. & Rodrigues da Costa, Roberto Berlini & Coronado, Christian J.R. & Roberts, Justo J. & de Carvalho, João A., 2022. "Ethanol as a renewable biofuel: Combustion characteristics and application in engines," Energy, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monir, Minhaj Uddin & Aziz, Azrina Abd & Khatun, Fatema & Yousuf, Abu, 2020. "Bioethanol production through syngas fermentation in a tar free bioreactor using Clostridium butyricum," Renewable Energy, Elsevier, vol. 157(C), pages 1116-1123.
    2. Chen, Zhengyu & Wang, Huan & Wei, Weiqi & Yuan, Zhaoyang, 2021. "Enhancing bagasse enzymatic hydrolysis through combination of ball-milling and LiCl/DMSO dissolution and regeneration," Renewable Energy, Elsevier, vol. 171(C), pages 994-1001.
    3. Raud, M. & Kikas, T. & Sippula, O. & Shurpali, N.J., 2019. "Potentials and challenges in lignocellulosic biofuel production technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 44-56.
    4. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    5. Yang, Guang & Wang, Jianlong, 2018. "Various additives for improving dark fermentative hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 130-146.
    6. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Ennaceri, Houda & Fischer, Kristina & Schulze, Agnes & Moheimani, Navid Reza, 2022. "Membrane fouling control for sustainable microalgal biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Tinôco, Daniel & Genier, Hugo Leonardo André & da Silveira, Wendel Batista, 2021. "Technology valuation of cellulosic ethanol production by Kluyveromyces marxianus CCT 7735 from sweet sorghum bagasse at elevated temperatures," Renewable Energy, Elsevier, vol. 173(C), pages 188-196.
    9. Sitka, Andrzej & Szulc, Piotr & Smykowski, Daniel & Jodkowski, Wiesław, 2021. "Application of poultry manure as an energy resource by its gasification in a prototype rotary counterflow gasifier," Renewable Energy, Elsevier, vol. 175(C), pages 422-429.
    10. Emilia Neag & Zamfira Stupar & S. Andrada Maicaneanu & Cecilia Roman, 2023. "Advances in Biodiesel Production from Microalgae," Energies, MDPI, vol. 16(3), pages 1-18, January.
    11. Wang, Zhenyi & Cheng, Jun & Guo, Danni & Chen, Lechong & You, Xuanxiang & Tang, Yang & Chen, Shutong & Chu, Feifei, 2023. "A novel simulation calculation model based on photosynthetic electron transfer for microalgal growth prediction in any photobioreactor," Applied Energy, Elsevier, vol. 334(C).
    12. Zhao, Zhenyu & Muylaert, Koenraad & F.J. Vankelecom, Ivo, 2023. "Applying membrane technology in microalgae industry: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    13. Cervi, Walter Rossi & Lamparelli, Rubens Augusto Camargo & Seabra, Joaquim Eugênio Abel & Junginger, Martin & van der Hilst, Floor, 2020. "Spatial assessment of the techno-economic potential of bioelectricity production from sugarcane straw," Renewable Energy, Elsevier, vol. 156(C), pages 1313-1324.
    14. Solarte-Toro, Juan Camilo & Romero-García, Juan Miguel & Martínez-Patiño, Juan Carlos & Ruiz-Ramos, Encarnación & Castro-Galiano, Eulogio & Cardona-Alzate, Carlos Ariel, 2019. "Acid pretreatment of lignocellulosic biomass for energy vectors production: A review focused on operational conditions and techno-economic assessment for bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 587-601.
    15. Sergio Paniagua & Alba Prado-Guerra & Ana Isabel Neto & Teresa Nunes & Luís Tarelho & Célia Alves & Luis Fernando Calvo, 2020. "Influence of Varieties and Organic Fertilizer in the Elaboration of a New Poplar-Straw Pellet and Its Emissions in a Domestic Boiler," Energies, MDPI, vol. 13(23), pages 1-17, November.
    16. Dastan Bamwesigye & Petr Kupec & Georges Chekuimo & Jindrich Pavlis & Obed Asamoah & Samuel Antwi Darkwah & Petra Hlaváčková, 2020. "Charcoal and Wood Biomass Utilization in Uganda: The Socioeconomic and Environmental Dynamics and Implications," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
    17. Zhang, Jingxin & Hu, Qiang & Qu, Yiyuan & Dai, Yanjun & He, Yiliang & Wang, Chi-Hwa & Tong, Yen Wah, 2020. "Integrating food waste sorting system with anaerobic digestion and gasification for hydrogen and methane co-production," Applied Energy, Elsevier, vol. 257(C).
    18. Kostas, Emily T. & Adams, Jessica M.M. & Ruiz, Héctor A. & Durán-Jiménez, Gabriela & Lye, Gary J., 2021. "Macroalgal biorefinery concepts for the circular bioeconomy: A review on biotechnological developments and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    19. Souza, Simone Pereira & Nogueira, Luiz Augusto Horta & Martinez, Johan & Cortez, Luis Augusto Barbosa, 2018. "Sugarcane can afford a cleaner energy profile in Latin America & Caribbean," Renewable Energy, Elsevier, vol. 121(C), pages 164-172.
    20. Copa Rey, José Ramón & Tamayo Pacheco, Jorge Jadid & António da Cruz Tarelho, Luís & Silva, Valter & Cardoso, João Sousa & Silveira, José Luz & Tuna, Celso Eduardo, 2021. "Evaluation of cogeneration alternative systems integrating biomass gasification applied to a Brazilian sugar industry," Renewable Energy, Elsevier, vol. 178(C), pages 318-333.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:131:y:2020:i:c:s1364032120302823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.