IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v12y2008i9p2331-2357.html
   My bibliography  Save this article

Focus on low carbon technologies: The positive solution

Author

Listed:
  • Omer, Abdeen Mustafa

Abstract

The use of renewable energy sources is a fundamental factor for a possible energy policy in the future. Taking into account the sustainable character of the majority of renewable energy technologies, they are able to preserve resources and to provide security, diversity of energy supply and services, virtually without environmental impact. This paper outlines possible energy savings and better performance achieved by different solar passive strategies (skylights, roof monitors and clerestory roof windows) and element arrangements across the roof in zones of cold to temperate climates. The aim of this work is to find possible design strategies, and to find solutions to provide thermal and luminous comfort in spaces of intermittent use and a poor aspect or orientation. In regions where heating is important during winter months, the use of top-light solar passive strategies for spaces without an equator-facing façade can efficiently reduce energy consumption for heating, lighting and ventilation. Passive solar systems for space heating and cooling, as well as passive cooling techniques when used in combination with conventional systems for heating, cooling, ventilation and lighting, can significantly contribute to the energy saving in the buildings sector, and the thermal behaviour of the dependent on the alternatives and interventions made on the building's shell. Exploitation of renewable energy in buildings and agricultural greenhouses can significantly contribute to energy saving. Promoting innovative renewable applications and reinforcing renewable energy market will contribute to preservation of the ecosystem by reducing emissions at local and global levels and will contribute to the amelioration of environmental conditions by replacing conventional resources with renewable sources that produce no air pollution or greenhouse gases and coexist comfortably with existing urban, agricultural and tourist land uses. As concerns society, development of the renewable market sector. Sustainable low-carbon energy scenarios for the new century emphasise the untapped potential of renewable resources. Energy efficiency brings health, productivity, safety, comfort and savings to homeowner, as well as local and global environmental benefits.

Suggested Citation

  • Omer, Abdeen Mustafa, 2008. "Focus on low carbon technologies: The positive solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2331-2357, December.
  • Handle: RePEc:eee:rensus:v:12:y:2008:i:9:p:2331-2357
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(07)00063-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shan, Yi & Ren, Zhengshi, 2023. "Does tourism development and renewable energy consumption drive high quality economic development?," Resources Policy, Elsevier, vol. 80(C).
    2. Lee, Juyong & Reiner, David M., 2023. "Determinants of public preferences on low-carbon energy sources: Evidence from the United Kingdom," Energy, Elsevier, vol. 284(C).
    3. Hamid Elsheikh, Mohamed & Shnawah, Dhafer Abdulameer & Sabri, Mohd Faizul Mohd & Said, Suhana Binti Mohd & Haji Hassan, Masjuki & Ali Bashir, Mohamed Bashir & Mohamad, Mahazani, 2014. "A review on thermoelectric renewable energy: Principle parameters that affect their performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 337-355.
    4. Handing Guo & Wanzhen Qiao & Jiren Liu, 2019. "Dynamic Feedback Analysis of Influencing Factors of Existing Building Energy-Saving Renovation Market Based on System Dynamics in China," Sustainability, MDPI, vol. 11(1), pages 1-16, January.
    5. Zeb, K. & Ali, S.M. & Khan, B. & Mehmood, C.A. & Tareen, N. & Din, W. & Farid, U. & Haider, A., 2017. "A survey on waste heat recovery: Electric power generation and potential prospects within Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1142-1155.
    6. Siddique, Abu Raihan Mohammad & Mahmud, Shohel & Heyst, Bill Van, 2017. "A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 730-744.
    7. Ahmad, Tanveer & Madonski, Rafal & Zhang, Dongdong & Huang, Chao & Mujeeb, Asad, 2022. "Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    8. Spanaki, Artemisia & Tsoutsos, Theocharis & Kolokotsa, Dionysia, 2011. "On the selection and design of the proper roof pond variant for passive cooling purposes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3523-3533.
    9. Ghalandari, Vahab & Majd, Mahdieh Mozaffari & Golestanian, Amir, 2019. "Energy audit for pyro-processing unit of a new generation cement plant and feasibility study for recovering waste heat: A case study," Energy, Elsevier, vol. 173(C), pages 833-843.
    10. Morrissey, J. & Moore, T. & Horne, R.E., 2011. "Affordable passive solar design in a temperate climate: An experiment in residential building orientation," Renewable Energy, Elsevier, vol. 36(2), pages 568-577.
    11. Xing, Yangang & Hewitt, Neil & Griffiths, Philip, 2011. "Zero carbon buildings refurbishment--A Hierarchical pathway," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3229-3236, August.
    12. Zhimiao Tao & Jiuping Xu, 2019. "Carbon-Regulated EOQ Models with Consumers’ Low-Carbon Awareness," Sustainability, MDPI, vol. 11(4), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:12:y:2008:i:9:p:2331-2357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.