IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v11y2007i5p998-1007.html
   My bibliography  Save this article

Use of different methodologies for thermal load and energy estimations in buildings including meteorological and sociological input parameters

Author

Listed:
  • Pedersen, Linda

Abstract

This review paper provides first an overview of the background for meteorological and sociological influences on thermal load and energy estimations. The different yearly representations of weather parameters (test reference year (TRY), design reference year (DRY), typical meteorological year (TMY) and weather year for energy calculations (WYEC)) are discussed, and compared to simplified representations of weather characteristics. Sociological influences on energy demand are discussed in relation to attitude and culture. Many methods exist for estimating thermal load and energy consumption in buildings, and they are primarily based on three different methodologies; regression analyses, energy simulation programs and intelligent computer systems. Regression analyses are mainly based on large amounts of metered load data, long-term weather characteristics and some information about the buildings. Energy simulation programs require detailed information about the buildings and sociological parameters, as well as thorough representation of weather data. Intelligent computer systems require metered load data, weather parameters and building information. The advantages and disadvantages of the alternative methodologies are discussed, as well as when and where to use them. Finally, the more specific usages of the methodologies are exemplified through three specific methods: conditional demand analysis (CDA), engineering method (EM) and neural networks (NN).

Suggested Citation

  • Pedersen, Linda, 2007. "Use of different methodologies for thermal load and energy estimations in buildings including meteorological and sociological input parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 998-1007, June.
  • Handle: RePEc:eee:rensus:v:11:y:2007:i:5:p:998-1007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(05)00092-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalogirou, Soteris A., 2001. "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 373-401, December.
    2. Said, S.A.M. & Kadry, H.M., 1994. "Generation of representative weather--Year data for Saudi Arabia," Applied Energy, Elsevier, vol. 48(2), pages 131-136.
    3. Wilhite, Harold & Nakagami, Hidetoshi & Masuda, Takashi & Yamaga, Yukiko & Haneda, Hiroshi, 1996. "A cross-cultural analysis of household energy use behaviour in Japan and Norway," Energy Policy, Elsevier, vol. 24(9), pages 795-803, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chengliang Fan & Yundan Liao & Yunfei Ding, 2019. "Development of a cooling load prediction model for air-conditioning system control of office buildings," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 14(1), pages 70-75.
    2. Lazos, Dimitris & Sproul, Alistair B. & Kay, Merlinde, 2014. "Optimisation of energy management in commercial buildings with weather forecasting inputs: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 587-603.
    3. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
    4. Difs, Kristina & Danestig, Maria & Trygg, Louise, 2009. "Increased use of district heating in industrial processes - Impacts on heat load duration," Applied Energy, Elsevier, vol. 86(11), pages 2327-2334, November.
    5. Beccali, M. & Cellura, M. & Lo Brano, V. & Marvuglia, A., 2008. "Short-term prediction of household electricity consumption: Assessing weather sensitivity in a Mediterranean area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2040-2065, October.
    6. James Allen & Ari Halberstadt & John Powers & Nael H. El-Farra, 2020. "An Optimization-Based Supervisory Control and Coordination Approach for Solar-Load Balancing in Building Energy Management," Mathematics, MDPI, vol. 8(8), pages 1-28, July.
    7. Fumo, Nelson, 2014. "A review on the basics of building energy estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 53-60.
    8. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    9. Chalal, Moulay Larbi & Benachir, Medjdoub & White, Michael & Shrahily, Raid, 2016. "Energy planning and forecasting approaches for supporting physical improvement strategies in the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 761-776.
    10. Ali Hamza & Muhammad Uneeb & Iftikhar Ahmad & Komal Saleem & Zunaib Ali, 2023. "Variable Structure-Based Control for Dynamic Temperature Setpoint Regulation in Hospital Extreme Healthcare Zones," Energies, MDPI, vol. 16(10), pages 1-27, May.
    11. Sarwar, Riasat & Cho, Heejin & Cox, Sam J. & Mago, Pedro J. & Luck, Rogelio, 2017. "Field validation study of a time and temperature indexed autoregressive with exogenous (ARX) model for building thermal load prediction," Energy, Elsevier, vol. 119(C), pages 483-496.
    12. Buonomano, Annamaria & Palombo, Adolfo, 2014. "Building energy performance analysis by an in-house developed dynamic simulation code: An investigation for different case studies," Applied Energy, Elsevier, vol. 113(C), pages 788-807.
    13. Ahmed, Ahmed I. & McLeod, Robert S. & Gustin, Matej, 2021. "Forecasting underheating in dwellings to detect excess winter mortality risks using time series models," Applied Energy, Elsevier, vol. 286(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lillemo, Shuling Chen, 2014. "Measuring the effect of procrastination and environmental awareness on households' energy-saving behaviours: An empirical approach," Energy Policy, Elsevier, vol. 66(C), pages 249-256.
    2. Cui, Ying & Yan, Da & Hong, Tianzhen & Xiao, Chan & Luo, Xuan & Zhang, Qi, 2017. "Comparison of typical year and multiyear building simulations using a 55-year actual weather data set from China," Applied Energy, Elsevier, vol. 195(C), pages 890-904.
    3. Naseri, F. & Gil, S. & Barbu, C. & Cetkin, E. & Yarimca, G. & Jensen, A.C. & Larsen, P.G. & Gomes, C., 2023. "Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    4. Hemmatabady, Hoofar & Welsch, Bastian & Formhals, Julian & Sass, Ingo, 2022. "AI-based enviro-economic optimization of solar-coupled and standalone geothermal systems for heating and cooling," Applied Energy, Elsevier, vol. 311(C).
    5. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "Identification of pulsating flow effects with CNT nanoparticles on the performance enhancements of thermoelectric generator (TEG) module in renewable energy applications," Renewable Energy, Elsevier, vol. 162(C), pages 1076-1086.
    6. Rosiek, S. & Batlles, F.J., 2010. "Modelling a solar-assisted air-conditioning system installed in CIESOL building using an artificial neural network," Renewable Energy, Elsevier, vol. 35(12), pages 2894-2901.
    7. Buratti, Cinzia & Barelli, Linda & Moretti, Elisa, 2012. "Application of artificial neural network to predict thermal transmittance of wooden windows," Applied Energy, Elsevier, vol. 98(C), pages 425-432.
    8. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    9. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    10. Philippopoulos, Kostas & Deligiorgi, Despina, 2012. "Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography," Renewable Energy, Elsevier, vol. 38(1), pages 75-82.
    11. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    12. Samet, Haidar & Hashemi, Farid & Ghanbari, Teymoor, 2015. "Minimum non detection zone for islanding detection using an optimal Artificial Neural Network algorithm based on PSO," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1-18.
    13. Μichalena, Evanthie & Hills, Jeremy M., 2012. "Renewable energy issues and implementation of European energy policy: The missing generation?," Energy Policy, Elsevier, vol. 45(C), pages 201-216.
    14. Fadare, D.A., 2009. "Modelling of solar energy potential in Nigeria using an artificial neural network model," Applied Energy, Elsevier, vol. 86(9), pages 1410-1422, September.
    15. Mellit, A. & Benghanem, M. & Arab, A. Hadj & Guessoum, A., 2005. "An adaptive artificial neural network model for sizing stand-alone photovoltaic systems: application for isolated sites in Algeria," Renewable Energy, Elsevier, vol. 30(10), pages 1501-1524.
    16. Muhsen, Dhiaa Halboot & Khatib, Tamer & Nagi, Farrukh, 2017. "A review of photovoltaic water pumping system designing methods, control strategies and field performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 70-86.
    17. Jensen, Jesper Ole, 2008. "Measuring consumption in households: Interpretations and strategies," Ecological Economics, Elsevier, vol. 68(1-2), pages 353-361, December.
    18. Kuk Yeol Bae & Han Seung Jang & Bang Chul Jung & Dan Keun Sung, 2019. "Effect of Prediction Error of Machine Learning Schemes on Photovoltaic Power Trading Based on Energy Storage Systems," Energies, MDPI, vol. 12(7), pages 1-20, April.
    19. Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
    20. Attour, Amel & Baudino, Marco & Krafft, Jackie & Lazaric, Nathalie, 2020. "Determinants of energy tracking application use at the city level: Evidence from France," Energy Policy, Elsevier, vol. 147(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:11:y:2007:i:5:p:998-1007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.