IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v9y1996i1p1283-1286.html
   My bibliography  Save this article

A new model for computing monthly average daily diffuse radiation for Bangkok

Author

Listed:
  • Janjai, S.
  • Praditwong, P.
  • Moonin, C.

Abstract

A model for computing monthly average daily diffuse radiation for Bangkok Thailand was developed. The development of the model was based on the analysis of global and diffuse radiation data collected from four solar monitoring stations located at different parts of Bangkok, with the data collection period ranging from 4 to 8 years. The monthly average daily ambient temperature and relative humidity were also incorporated in the model. To evaluate its performance, the model was used to compute monthly average daily diffuse radiation of an independent data set. The model performed better than those found in the literatures.

Suggested Citation

  • Janjai, S. & Praditwong, P. & Moonin, C., 1996. "A new model for computing monthly average daily diffuse radiation for Bangkok," Renewable Energy, Elsevier, vol. 9(1), pages 1283-1286.
  • Handle: RePEc:eee:renene:v:9:y:1996:i:1:p:1283-1286
    DOI: 10.1016/0960-1481(96)88511-9
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0960148196885119
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0960-1481(96)88511-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shamshirband, Shahaboddin & Mohammadi, Kasra & Khorasanizadeh, Hossein & Yee, Por Lip & Lee, Malrey & Petković, Dalibor & Zalnezhad, Erfan, 2016. "Estimating the diffuse solar radiation using a coupled support vector machine–wavelet transform model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 428-435.
    2. Kambezidis, H.D. & Psiloglou, B.E. & Karagiannis, D. & Dumka, U.C. & Kaskaoutis, D.G., 2017. "Meteorological Radiation Model (MRM v6.1): Improvements in diffuse radiation estimates and a new approach for implementation of cloud products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 616-637.
    3. Karakoti, Indira & Das, Prasun Kumar & Singh, S.K., 2012. "Predicting monthly mean daily diffuse radiation for India," Applied Energy, Elsevier, vol. 91(1), pages 412-425.
    4. Khatib, Tamer & Mohamed, Azah & Sopian, K., 2012. "A review of solar energy modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2864-2869.
    5. Khorasanizadeh, Hossein & Mohammadi, Kasra, 2016. "Diffuse solar radiation on a horizontal surface: Reviewing and categorizing the empirical models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 338-362.
    6. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1326-1342.
    7. Khalil, Samy A. & Shaffie, A.M., 2013. "A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 853-863.
    8. Li, Huashan & Bu, Xianbiao & Long, Zhen & Zhao, Liang & Ma, Weibin, 2012. "Calculating the diffuse solar radiation in regions without solar radiation measurements," Energy, Elsevier, vol. 44(1), pages 611-615.
    9. Khalil, Samy A. & Shaffie, A.M., 2016. "Evaluation of transposition models of solar irradiance over Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 105-119.
    10. Li, Huashan & Ma, Weibin & Wang, Xianlong & Lian, Yongwang, 2011. "Estimating monthly average daily diffuse solar radiation with multiple predictors: A case study," Renewable Energy, Elsevier, vol. 36(7), pages 1944-1948.
    11. Cao, Fei & Li, Huashan & Yang, Tian & Li, Yan & Zhu, Tianyu & Zhao, Liang, 2017. "Evaluation of diffuse solar radiation models in Northern China: New model establishment and radiation sources comparison," Renewable Energy, Elsevier, vol. 103(C), pages 708-720.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:9:y:1996:i:1:p:1283-1286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.