IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v85y2016icp31-44.html
   My bibliography  Save this article

Comparative study of the influences of different water tank shapes on thermal energy storage capacity and thermal stratification

Author

Listed:
  • Yang, Zheng
  • Chen, Haisheng
  • Wang, Liang
  • Sheng, Yong
  • Wang, Yifei

Abstract

The influences of different water tank shapes on thermal energy storage capacity and thermal stratification in the static mode of operation is investigated in this study under laminar natural convection. A new experimental apparatus is built, and a numerical model is developed to simulate the flow and heat transfer in the water tank. Computational results agree with the experimental data. Among the 10 different water tank shapes studied, the sphere and barrel water tanks are ideal for thermal energy storage capacity, whereas the cylinder water tank is the least favorable. The thermal energy storage capacity is closely related to the surface area of the water tank. According to the characteristics of the velocity and temperature fields, these shapes can be divided into three categories: shapes with sharp corners, those with hemispheres, and those with horizontal plane surface. Shapes with sharp corners have the highest degree of thermal stratification, whereas the shapes with horizontal plane surface possess the lowest. That of the shapes with hemispheres lies in between these two degrees. The thermal stratification of different shapes is determined by the flow at the bottom of the water tank and the heat transfer from the fluid to the environment.

Suggested Citation

  • Yang, Zheng & Chen, Haisheng & Wang, Liang & Sheng, Yong & Wang, Yifei, 2016. "Comparative study of the influences of different water tank shapes on thermal energy storage capacity and thermal stratification," Renewable Energy, Elsevier, vol. 85(C), pages 31-44.
  • Handle: RePEc:eee:renene:v:85:y:2016:i:c:p:31-44
    DOI: 10.1016/j.renene.2015.06.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115300410
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.06.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trojan, Marcin & Taler, Dawid & Dzierwa, Piotr & Taler, Jan & Kaczmarski, Karol & Wrona, Jan, 2019. "The use of pressure hot water storage tanks to improve the energy flexibility of the steam power unit," Energy, Elsevier, vol. 173(C), pages 926-936.
    2. Dzierwa, Piotr & Taler, Jan & Peret, Patryk & Taler, Dawid & Trojan, Marcin, 2022. "Transient CFD simulation of charging hot water tank," Energy, Elsevier, vol. 239(PC).
    3. Agnieszka Malec & Tomasz Cholewa & Alicja Siuta-Olcha, 2021. "Influence of Cold Water Inlets and Obstacles on the Energy Efficiency of the Hot Water Production Process in a Hot Water Storage Tank," Energies, MDPI, vol. 14(20), pages 1-26, October.
    4. Rendall, Joseph & Abu-Heiba, Ahmad & Gluesenkamp, Kyle & Nawaz, Kashif & Worek, William & Elatar, Ahmed, 2021. "Nondimensional convection numbers modeling thermally stratified storage tanks: Richardson's number and hot-water tanks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Li, Qiong & Huang, Xiaoqiao & Tai, Yonghang & Gao, Wenfeng & Wenxian, L. & Liu, Wuming, 2021. "Thermal stratification in a solar hot water storage tank with mantle heat exchanger," Renewable Energy, Elsevier, vol. 173(C), pages 1-11.
    6. Khurana, Hitesh & Majumdar, Rudrodip & Saha, Sandip K., 2022. "Response Surface Methodology-based prediction model for working fluid temperature during stand-alone operation of vertical cylindrical thermal energy storage tank," Renewable Energy, Elsevier, vol. 188(C), pages 619-636.
    7. Afshan, Mahboob E. & Selvakumar, A.S & Velraj, R. & Rajaraman, R., 2020. "Effect of aspect ratio and dispersed PCM balls on the charging performance of a latent heat thermal storage unit for solar thermal applications," Renewable Energy, Elsevier, vol. 148(C), pages 876-888.
    8. Lutsenko, Nickolay A. & Fetsov, Sergey S., 2020. "Effect of side walls shape on charging and discharging performance of thermal energy storages based on granular phase change materials," Renewable Energy, Elsevier, vol. 162(C), pages 466-477.
    9. Bai, Yakai & Wang, Zhifeng & Fan, Jianhua & Yang, Ming & Li, Xiaoxia & Chen, Longfei & Yuan, Guofeng & Yang, Junfeng, 2020. "Numerical and experimental study of an underground water pit for seasonal heat storage," Renewable Energy, Elsevier, vol. 150(C), pages 487-508.
    10. Kurşun, Burak & Ökten, Korhan, 2018. "Effect of rectangular hot water tank position and aspect ratio on thermal stratification enhancement," Renewable Energy, Elsevier, vol. 116(PA), pages 639-646.
    11. Wunvisa Tipasri & Amnart Suksri & Karthikeyan Velmurugan & Tanakorn Wongwuttanasatian, 2022. "Energy Management for an Air Conditioning System Using a Storage Device to Reduce the On-Peak Power Consumption," Energies, MDPI, vol. 15(23), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:85:y:2016:i:c:p:31-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.