IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v7y1996i1p15-21.html
   My bibliography  Save this article

Optimization of flow-channel depth for conventional flat-plate solar air heaters

Author

Listed:
  • Hegazy, Adel A.

Abstract

An analytical criterion for determining the optimum flow-channel depth of conventional flat-plate solar air heaters has been developed. The criterion gives the minimum channel-depth required to maximize the useful heat gain from the absorber plate to the flowing air for a particular pumping power. A parametric study was carried out to validate the engineering accuracy of the optimization criterion which was found to be considerably accurate over the entire range of variables covered. An expression for estimating the channel-depth-to-length ratio that yields an outlet air temperature equal to the absorber-plate mean temperature is also derived in terms of flow pumping power. This expression is of great importance for designers of this type of solar air heater.

Suggested Citation

  • Hegazy, Adel A., 1996. "Optimization of flow-channel depth for conventional flat-plate solar air heaters," Renewable Energy, Elsevier, vol. 7(1), pages 15-21.
  • Handle: RePEc:eee:renene:v:7:y:1996:i:1:p:15-21
    DOI: 10.1016/0960-1481(95)00117-4
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0960148195001174
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0960-1481(95)00117-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Verma, Ratna & Chandra, Ram & Garg, H.P., 1992. "Optimization of solar air heaters of different designs," Renewable Energy, Elsevier, vol. 2(4), pages 521-531.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hegazy, Adel A., 1999. "Technical note," Renewable Energy, Elsevier, vol. 18(2), pages 283-304.
    2. Nidhul, Kottayat & Yadav, Ajay Kumar & Anish, S. & Kumar, Sachin, 2021. "Critical review of ribbed solar air heater and performance evaluation of various V-rib configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    3. Sharma, Sanjay K. & Kalamkar, Vilas R., 2015. "Thermo-hydraulic performance analysis of solar air heaters having artificial roughness–A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 413-435.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hernández, Alejandro L. & Quiñonez, José E., 2013. "Analytical models of thermal performance of solar air heaters of double-parallel flow and double-pass counter flow," Renewable Energy, Elsevier, vol. 55(C), pages 380-391.
    2. Alam, Tabish & Kim, Man-Hoe, 2017. "Performance improvement of double-pass solar air heater – A state of art of review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 779-793.
    3. Farshchimonfared, M. & Bilbao, J.I. & Sproul, A.B., 2015. "Channel depth, air mass flow rate and air distribution duct diameter optimization of photovoltaic thermal (PV/T) air collectors linked to residential buildings," Renewable Energy, Elsevier, vol. 76(C), pages 27-35.
    4. Metwally, M.N. & Abou-Ziyan, H.Z. & El-Leathy, A.M., 1997. "Performance of advanced corrugated-duct solar air collector compared with five conventional designs," Renewable Energy, Elsevier, vol. 10(4), pages 519-537.
    5. Varun Pratap Singh & Siddharth Jain & Ashish Karn & Ashwani Kumar & Gaurav Dwivedi & Chandan Swaroop Meena & Nitesh Dutt & Aritra Ghosh, 2022. "Recent Developments and Advancements in Solar Air Heaters: A Detailed Review," Sustainability, MDPI, vol. 14(19), pages 1-55, September.
    6. Hegazy, Adel A., 1999. "Technical note," Renewable Energy, Elsevier, vol. 18(2), pages 283-304.
    7. Tchinda, Réné, 2009. "A review of the mathematical models for predicting solar air heaters systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1734-1759, October.
    8. Sharma, Sanjay K. & Kalamkar, Vilas R., 2015. "Thermo-hydraulic performance analysis of solar air heaters having artificial roughness–A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 413-435.
    9. Rajarajeswari, K. & Sreekumar, A., 2016. "Matrix solar air heaters – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 704-712.
    10. Saxena, Abhishek & Varun, & El-Sebaii, A.A., 2015. "A thermodynamic review of solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 863-890.
    11. Yeh, Ho-Ming & Ho, Chii-Dong & Hou, Jun-Ze, 1999. "The improvement of collector efficiency in solar air heaters by simultaneously air flow over and under the absorbing plate," Energy, Elsevier, vol. 24(10), pages 857-871.
    12. Chii-Dong Ho & Ching-Fang Hsiao & Hsuan Chang & Yi-En Tien & Zih-Syuan Hong, 2017. "Efficiency of Recycling Double-Pass V-Corrugated Solar Air Collectors," Energies, MDPI, vol. 10(7), pages 1-15, June.
    13. Arun, K.R. & Srinivas, M. & Saleel, C.A. & Jayaraj, S., 2020. "Influence of the location of discrete macro-encapsulated thermal energy storage on the performance of a double pass solar plate collector system," Renewable Energy, Elsevier, vol. 146(C), pages 675-686.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:7:y:1996:i:1:p:15-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.