IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v2y1992i4p521-531.html
   My bibliography  Save this article

Optimization of solar air heaters of different designs

Author

Listed:
  • Verma, Ratna
  • Chandra, Ram
  • Garg, H.P.

Abstract

The optimum flow channel depth and mass flow rate in 10 different designs of solar air heaters have been obtained. The design variations considered are flat absorber type with and without cover glazings; single, double and triple pass etc. It is found that there exists an optimum mass flow rate corresponding to an optimum flow channel depth, for each design considered. The thermal efficiency of each design is then obtained under the optimum conditions. It is found that a single glazing solar air heater operating under double flow configuration gives the best performance.

Suggested Citation

  • Verma, Ratna & Chandra, Ram & Garg, H.P., 1992. "Optimization of solar air heaters of different designs," Renewable Energy, Elsevier, vol. 2(4), pages 521-531.
  • Handle: RePEc:eee:renene:v:2:y:1992:i:4:p:521-531
    DOI: 10.1016/0960-1481(92)90091-G
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/096014819290091G
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0960-1481(92)90091-G?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yeh, Ho-Ming & Ho, Chii-Dong & Hou, Jun-Ze, 1999. "The improvement of collector efficiency in solar air heaters by simultaneously air flow over and under the absorbing plate," Energy, Elsevier, vol. 24(10), pages 857-871.
    2. Varun Pratap Singh & Siddharth Jain & Ashish Karn & Ashwani Kumar & Gaurav Dwivedi & Chandan Swaroop Meena & Nitesh Dutt & Aritra Ghosh, 2022. "Recent Developments and Advancements in Solar Air Heaters: A Detailed Review," Sustainability, MDPI, vol. 14(19), pages 1-55, September.
    3. Rajarajeswari, K. & Sreekumar, A., 2016. "Matrix solar air heaters – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 704-712.
    4. Metwally, M.N. & Abou-Ziyan, H.Z. & El-Leathy, A.M., 1997. "Performance of advanced corrugated-duct solar air collector compared with five conventional designs," Renewable Energy, Elsevier, vol. 10(4), pages 519-537.
    5. Alam, Tabish & Kim, Man-Hoe, 2017. "Performance improvement of double-pass solar air heater – A state of art of review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 779-793.
    6. Saxena, Abhishek & Varun, & El-Sebaii, A.A., 2015. "A thermodynamic review of solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 863-890.
    7. Hegazy, Adel A., 1999. "Technical note," Renewable Energy, Elsevier, vol. 18(2), pages 283-304.
    8. Tchinda, Réné, 2009. "A review of the mathematical models for predicting solar air heaters systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1734-1759, October.
    9. Hegazy, Adel A., 1996. "Optimization of flow-channel depth for conventional flat-plate solar air heaters," Renewable Energy, Elsevier, vol. 7(1), pages 15-21.
    10. Chii-Dong Ho & Ching-Fang Hsiao & Hsuan Chang & Yi-En Tien & Zih-Syuan Hong, 2017. "Efficiency of Recycling Double-Pass V-Corrugated Solar Air Collectors," Energies, MDPI, vol. 10(7), pages 1-15, June.
    11. Farshchimonfared, M. & Bilbao, J.I. & Sproul, A.B., 2015. "Channel depth, air mass flow rate and air distribution duct diameter optimization of photovoltaic thermal (PV/T) air collectors linked to residential buildings," Renewable Energy, Elsevier, vol. 76(C), pages 27-35.
    12. Sharma, Sanjay K. & Kalamkar, Vilas R., 2015. "Thermo-hydraulic performance analysis of solar air heaters having artificial roughness–A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 413-435.
    13. Arun, K.R. & Srinivas, M. & Saleel, C.A. & Jayaraj, S., 2020. "Influence of the location of discrete macro-encapsulated thermal energy storage on the performance of a double pass solar plate collector system," Renewable Energy, Elsevier, vol. 146(C), pages 675-686.
    14. Hernández, Alejandro L. & Quiñonez, José E., 2013. "Analytical models of thermal performance of solar air heaters of double-parallel flow and double-pass counter flow," Renewable Energy, Elsevier, vol. 55(C), pages 380-391.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:2:y:1992:i:4:p:521-531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.