IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v68y2014icp282-288.html
   My bibliography  Save this article

Experimental study and empirical correlation development of fuel properties of waste cooking palm biodiesel and its diesel blends at elevated temperatures

Author

Listed:
  • Ebna Alam Fahd, M.
  • Lee, Poh-Seng
  • Chou, Siaw Kiang
  • Wenming, Yang
  • Yap, Christopher

Abstract

In this experimental work, the density, dynamic viscosity and higher heating value of methyl ester based waste cooking palm-biodiesel oil (WMEPB) was investigated under varying temperature and blend ratio condition with No. 2 diesel fuel. The transesterified fatty acid methyl ester of palm vegetable oil collected from local food and beverage shops was used as neat biodiesel. Four different fuel blends (20%, 40%, 60% and 80% by volume mixing with base diesel) were studied along with base No. 2 diesel fuel and pure biodiesel. Tests for dynamic viscosity and density were performed in the temperature range 0–130 °C for each fuel sample whereas the higher heating values were determined at 25 °C room temperature condition. It is found that pure biodiesel has the highest density and dynamic viscosity at a given temperature whereas it exhibits lowest combustion heating value among the six fuels. Moreover, the density for each fuel sample decreases linearly with the increase in temperature. On the other hand, the dynamic viscosity decreases exponentially with the temperature for each fuel sample. In addition, based on the experimental results, regression correlations have been proposed for the density, dynamic viscosity, and higher heating value of the fuels. Subsequently, comprehensive error analyses of these proposed correlations were performed. In particular, the correlation for density and dynamic viscosity were respectively compared with Kay's mixing rule and Grunberg-Nissan mixing rule theory in order to validate their applicability. It is found that density correlations predicted within ±0.3% average error band. And, as high as 72.2% of the dynamic viscosity data were in the range of ±5% average error while the remaining data fell within ±10% error range. And finally, through a comparative study with the available fuel property results of fresh methyl ester palm biodiesel, it is found that available existing correlations derived from fresh palm biodiesel studies can not accurately predict the fuel properties of same waste biodiesel and its blends with diesel.

Suggested Citation

  • Ebna Alam Fahd, M. & Lee, Poh-Seng & Chou, Siaw Kiang & Wenming, Yang & Yap, Christopher, 2014. "Experimental study and empirical correlation development of fuel properties of waste cooking palm biodiesel and its diesel blends at elevated temperatures," Renewable Energy, Elsevier, vol. 68(C), pages 282-288.
  • Handle: RePEc:eee:renene:v:68:y:2014:i:c:p:282-288
    DOI: 10.1016/j.renene.2014.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114000871
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alptekin, Ertan & Canakci, Mustafa, 2008. "Determination of the density and the viscosities of biodiesel–diesel fuel blends," Renewable Energy, Elsevier, vol. 33(12), pages 2623-2630.
    2. Giakoumis, Evangelos G., 2013. "A statistical investigation of biodiesel physical and chemical properties, and their correlation with the degree of unsaturation," Renewable Energy, Elsevier, vol. 50(C), pages 858-878.
    3. Nita, I. & Geacai, S. & Iulian, O., 2011. "Measurements and correlations of physico-chemical properties to composition of pseudo-binary mixtures with biodiesel," Renewable Energy, Elsevier, vol. 36(12), pages 3417-3423.
    4. Tesfa, B. & Mishra, R. & Gu, F. & Powles, N., 2010. "Prediction models for density and viscosity of biodiesel and their effects on fuel supply system in CI engines," Renewable Energy, Elsevier, vol. 35(12), pages 2752-2760.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Renas Hasan Saeed Saeed & Youssef Kassem & Hüseyin Çamur, 2019. "Effect of Biodiesel Mixture Derived from Waste Frying-Corn, Frying-Canola-Corn and Canola-Corn Cooking Oils with Various ‎Ages on Physicochemical Properties," Energies, MDPI, vol. 12(19), pages 1-26, September.
    2. Thanh Xuan NguyenThi & Jean-Patrick Bazile & David Bessières, 2018. "Density Measurements of Waste Cooking Oil Biodiesel and Diesel Blends Over Extended Pressure and Temperature Ranges," Energies, MDPI, vol. 11(5), pages 1-14, May.
    3. Sierra-Cantor, Jonathan Fabián & Guerrero-Fajardo, Carlos Alberto, 2017. "Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 774-790.
    4. Yesilyurt, Murat Kadir, 2019. "The effects of the fuel injection pressure on the performance and emission characteristics of a diesel engine fuelled with waste cooking oil biodiesel-diesel blends," Renewable Energy, Elsevier, vol. 132(C), pages 649-666.
    5. Eryilmaz, Tanzer & Yesilyurt, Murat Kadir, 2016. "Influence of blending ratio on the physicochemical properties of safflower oil methyl ester-safflower oil, safflower oil methyl ester-diesel and safflower oil-diesel," Renewable Energy, Elsevier, vol. 95(C), pages 233-247.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bukkarapu, Kiran Raj & Krishnasamy, Anand, 2022. "A critical review on available models to predict engine fuel properties of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    2. Suiuay, Chokchai & Laloon, Kittipong & Katekaew, Somporn & Senawong, Kritsadang & Noisuwan, Phakamat & Sudajan, Somposh, 2020. "Effect of gasoline-like fuel obtained from hard-resin of Yang (Dipterocarpus alatus) on single cylinder gasoline engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 153(C), pages 634-645.
    3. Hasan, M.M. & Rahman, M.M., 2017. "Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 938-948.
    4. Sayyed, Siraj & Das, Randip Kumar & Kulkarni, Kishor, 2022. "Experimental investigation for evaluating the performance and emission characteristics of DICI engine fueled with dual biodiesel-diesel blends of Jatropha, Karanja, Mahua, and Neem," Energy, Elsevier, vol. 238(PB).
    5. Belachew Cekene Tesfa & Rakesh Mishra & Aliyu M. Aliyu, 2021. "Effect of Biodiesel Blends on the Transient Performance of Compression Ignition Engines," Energies, MDPI, vol. 14(17), pages 1-21, August.
    6. Renas Hasan Saeed Saeed & Youssef Kassem & Hüseyin Çamur, 2019. "Effect of Biodiesel Mixture Derived from Waste Frying-Corn, Frying-Canola-Corn and Canola-Corn Cooking Oils with Various ‎Ages on Physicochemical Properties," Energies, MDPI, vol. 12(19), pages 1-26, September.
    7. Thangamani, Saravanakumar & Sundaresan, Sathya Narayanan & Kannappan S., Subbu & Barawkar, Viraj Tatyasaheb & Jeyaseelan, Thangaraja, 2021. "Impact of biodiesel and diesel blends on the fuel filter: A combined experimental and simulation study," Energy, Elsevier, vol. 227(C).
    8. Arbab, M.I. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Imtenan, S. & Sajjad, H., 2013. "Fuel properties, engine performance and emission characteristic of common biodiesels as a renewable and sustainable source of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 133-147.
    9. Sibel Osman & Amalia Stefaniu, 2023. "Density, Viscosity, and Distillation Temperatures of Binary Blends of Diesel Fuel Mixed with Oxygenated Components at Different Temperatures," Sustainability, MDPI, vol. 15(21), pages 1-20, October.
    10. Mohd Noor, C.W. & Noor, M.M. & Mamat, R., 2018. "Biodiesel as alternative fuel for marine diesel engine applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 127-142.
    11. Nita, I. & Geacai, S. & Iulian, O., 2011. "Measurements and correlations of physico-chemical properties to composition of pseudo-binary mixtures with biodiesel," Renewable Energy, Elsevier, vol. 36(12), pages 3417-3423.
    12. Hüseyin Çamur & Ebaa Alassi, 2021. "Physicochemical Properties Enhancement of Biodiesel Synthesis from Various Feedstocks of Waste/Residential Vegetable Oils and Palm Oil," Energies, MDPI, vol. 14(16), pages 1-29, August.
    13. Anis, Samsudin & Budiandono, Galuh Nur, 2019. "Investigation of the effects of preheating temperature of biodiesel-diesel fuel blends on spray characteristics and injection pump performances," Renewable Energy, Elsevier, vol. 140(C), pages 274-280.
    14. Kodate, Shankar Vitthal & Satyanarayana Raju, Pragada & Yadav, Ajay Kumar & Kumar, G.N., 2021. "Investigation of preheated Dhupa seed oil biodiesel as an alternative fuel on the performance, emission and combustion in a CI engine," Energy, Elsevier, vol. 231(C).
    15. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    16. Dwivedi, Gaurav & Sharma, M.P., 2014. "Impact of cold flow properties of biodiesel on engine performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 650-656.
    17. Zhang, Ping & Zhuo, La & Li, Meng & Liu, Yilin & Wu, Pute, 2023. "Assessment of advanced bioethanol potential under water and land resource constraints in China," Renewable Energy, Elsevier, vol. 212(C), pages 359-371.
    18. Mohammad Anwar & Mohammad G. Rasul & Nanjappa Ashwath & Md Mofijur Rahman, 2018. "Optimisation of Second-Generation Biodiesel Production from Australian Native Stone Fruit Oil Using Response Surface Method," Energies, MDPI, vol. 11(10), pages 1-18, September.
    19. Mishra, Shashank & Anand, K. & Santhosh, S. & Mehta, Pramod S., 2017. "Comparison of biodiesel fuel behavior in a heavy duty turbocharged and a light duty naturally aspirated engine," Applied Energy, Elsevier, vol. 202(C), pages 459-470.
    20. Baena-Moreno, Francisco M. & Sebastia-Saez, Daniel & Pastor-Pérez, Laura & Reina, Tomas Ramirez, 2021. "Analysis of the potential for biogas upgrading to syngas via catalytic reforming in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:68:y:2014:i:c:p:282-288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.