IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v66y2014icp99-110.html

Fault detection method for grid-connected photovoltaic plants

Author

Listed:
  • Chine, W.
  • Mellit, A.
  • Pavan, A. Massi
  • Kalogirou, S.A.

Abstract

In this work, an automatic fault detection method for grid-connected photovoltaic (GCPV) plants is presented. The proposed method generates a diagnostic signal which indicates possible faults occurring in the GCPV plant. In order to determine the location of the fault, the ratio between DC and AC power is monitored. The software tool developed identifies different types of faults like: fault in a photovoltaic module, fault in a photovoltaic string, fault in an inverter, and a general fault that may include partial shading, PV ageing, or MPPT error. In addition to the diagnostic signal, other essential information about the system can be displayed each 10 min on the designed tool. The method has been validated using an experimental database of climatic and electrical parameters regarding a 20 kWp GCPV plant installed on the rooftop of the municipality of Trieste, Italy. The obtained results indicate that the proposed method can detect and locate correctly different type of faults in both DC and AC sides of the GCPV plant. The developed software can help users to check possible faults on their systems in real time.

Suggested Citation

  • Chine, W. & Mellit, A. & Pavan, A. Massi & Kalogirou, S.A., 2014. "Fault detection method for grid-connected photovoltaic plants," Renewable Energy, Elsevier, vol. 66(C), pages 99-110.
  • Handle: RePEc:eee:renene:v:66:y:2014:i:c:p:99-110
    DOI: 10.1016/j.renene.2013.11.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113006617
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.11.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Almonacid, F. & Rus, C. & Pérez-Higueras, P. & Hontoria, L., 2011. "Calculation of the energy provided by a PV generator. Comparative study: Conventional methods vs. artificial neural networks," Energy, Elsevier, vol. 36(1), pages 375-384.
    2. So, Jung Hun & Jung, Young Seok & Yu, Gwon Jong & Choi, Ju Yeop & Choi, Jae Ho, 2007. "Performance results and analysis of 3kW grid-connected PV systems," Renewable Energy, Elsevier, vol. 32(11), pages 1858-1872.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    2. Trigo-González, Mauricio & Batlles, F.J. & Alonso-Montesinos, Joaquín & Ferrada, Pablo & del Sagrado, J. & Martínez-Durbán, M. & Cortés, Marcelo & Portillo, Carlos & Marzo, Aitor, 2019. "Hourly PV production estimation by means of an exportable multiple linear regression model," Renewable Energy, Elsevier, vol. 135(C), pages 303-312.
    3. Kiraly, Annamaria & Pahor, Bojan & Kravanja, Zdravko, 2013. "Achieving energy self-sufficiency by integrating renewables into companies' supply networks," Energy, Elsevier, vol. 55(C), pages 46-57.
    4. Manuel Angel Gadeo-Martos & Antonio Jesús Yuste-Delgado & Florencia Almonacid Cruz & Jose-Angel Fernandez-Prieto & Joaquin Canada-Bago, 2019. "Modeling a High Concentrator Photovoltaic Module Using Fuzzy Rule-Based Systems," Energies, MDPI, vol. 12(3), pages 1-22, February.
    5. Su, Yan & Chan, Lai-Cheong & Shu, Lianjie & Tsui, Kwok-Leung, 2012. "Real-time prediction models for output power and efficiency of grid-connected solar photovoltaic systems," Applied Energy, Elsevier, vol. 93(C), pages 319-326.
    6. Song, Dongdong & Jiao, Hongtao & Fan, Chien Te, 2015. "Overview of the photovoltaic technology status and perspective in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 848-856.
    7. Pantic, Lana S. & Pavlović, Tomislav M. & Milosavljević, Dragana D. & Radonjic, Ivana S. & Radovic, Miodrag K. & Sazhko, Galina, 2016. "The assessment of different models to predict solar module temperature, output power and efficiency for Nis, Serbia," Energy, Elsevier, vol. 109(C), pages 38-48.
    8. Abubaker, Ahmad M. & Darwish Ahmad, Adnan & Salaimeh, Ahmad A. & Akafuah, Nelson K. & Saito, Kozo, 2022. "A novel solar combined cycle integration: An exergy-based optimization using artificial neural network," Renewable Energy, Elsevier, vol. 181(C), pages 914-932.
    9. Aqachmar, Zineb & Campana, Pietro Elia & Bouhal, Tarik & El Qarnia, Hamid & Outzourhit, Abdelkader & Alami Ibnouelghazi, El & Mouak, Said & Aqachmar, Atman, 2022. "Electrification of Africa through CPV installations in small-scale industrial applications: Energetic, economic, and environmental analysis," Renewable Energy, Elsevier, vol. 197(C), pages 723-746.
    10. Elibol, Erdem & Özmen, Özge Tüzün & Tutkun, Nedim & Köysal, Oğuz, 2017. "Outdoor performance analysis of different PV panel types," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 651-661.
    11. Menti, Anthoula & Zacharias, Thomas & Milias-Argitis, John, 2011. "Harmonic distortion assessment for a single-phase grid-connected photovoltaic system," Renewable Energy, Elsevier, vol. 36(1), pages 360-368.
    12. Pérez-Alonso, J. & Pérez-García, M. & Pasamontes-Romera, M. & Callejón-Ferre, A.J., 2012. "Performance analysis and neural modelling of a greenhouse integrated photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4675-4685.
    13. Dhimish, Mahmoud & Holmes, Violeta & Dales, Mark, 2017. "Parallel fault detection algorithm for grid-connected photovoltaic plants," Renewable Energy, Elsevier, vol. 113(C), pages 94-111.
    14. Mikulandrić, Robert & Lončar, Dražen & Cvetinović, Dejan & Spiridon, Gabriel, 2013. "Improvement of existing coal fired thermal power plants performance by control systems modifications," Energy, Elsevier, vol. 57(C), pages 55-65.
    15. Fernández, Eduardo F. & Almonacid, Florencia, 2014. "Spectrally corrected direct normal irradiance based on artificial neural networks for high concentrator photovoltaic applications," Energy, Elsevier, vol. 74(C), pages 941-949.
    16. Wittkopf, Stephen & Valliappan, Selvam & Liu, Lingyun & Ang, Kian Seng & Cheng, Seng Chye Jonathan, 2012. "Analytical performance monitoring of a 142.5kWp grid-connected rooftop BIPV system in Singapore," Renewable Energy, Elsevier, vol. 47(C), pages 9-20.
    17. Rahman, M.Mahbubur & Selvaraj, J. & Rahim, N.A. & Hasanuzzaman, M., 2018. "Global modern monitoring systems for PV based power generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4142-4158.
    18. Senturk, Ali, 2020. "Investigation of datasheet provided temperature coefficients of photovoltaic modules under various sky profiles at the field by applying a new validation procedure," Renewable Energy, Elsevier, vol. 152(C), pages 644-652.
    19. Katsikogiannis, Odysseas Alexandros & Ziar, Hesan & Isabella, Olindo, 2022. "Integration of bifacial photovoltaics in agrivoltaic systems: A synergistic design approach," Applied Energy, Elsevier, vol. 309(C).
    20. Ikkurti, Hanumath Prasad & Saha, Suman, 2015. "A comprehensive techno-economic review of microinverters for Building Integrated Photovoltaics (BIPV)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 997-1006.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:66:y:2014:i:c:p:99-110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.