IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p567-d205130.html
   My bibliography  Save this article

Modeling a High Concentrator Photovoltaic Module Using Fuzzy Rule-Based Systems

Author

Listed:
  • Manuel Angel Gadeo-Martos

    (Telematic Engineering System Research Group, CEATIC Center of Advanced Studies in Information and Communication Technologies, University of Jaén, Campus Científico-Tecnológico de Linares, C.P. 23700 Linares, Spain)

  • Antonio Jesús Yuste-Delgado

    (Telematic Engineering System Research Group, CEATIC Center of Advanced Studies in Information and Communication Technologies, University of Jaén, Campus Científico-Tecnológico de Linares, C.P. 23700 Linares, Spain)

  • Florencia Almonacid Cruz

    (IDEA Solar Energy Research Group, Center of Advanced Studies in Energy and Environment, University of Jaén, Campus las Lagunillas, C.P. 23071 Jaén, Spain)

  • Jose-Angel Fernandez-Prieto

    (Telematic Engineering System Research Group, CEATIC Center of Advanced Studies in Information and Communication Technologies, University of Jaén, Campus Científico-Tecnológico de Linares, C.P. 23700 Linares, Spain)

  • Joaquin Canada-Bago

    (Telematic Engineering System Research Group, CEATIC Center of Advanced Studies in Information and Communication Technologies, University of Jaén, Campus Científico-Tecnológico de Linares, C.P. 23700 Linares, Spain)

Abstract

Currently, there is growing interest in the modeling of high concentrator photovoltaic modules, due to the importance of achieving an accurate model, to improve the knowledge and understanding of this technology and to promote its expansion. In recent years, some techniques of artificial intelligence, such as the Artificial Neural Network, have been used with the goal of obtaining an electrical model of these modules. However, little attention has been paid to applying Fuzzy Rule-Based Systems for this purpose. This work presents two new models of high concentrator photovoltaics that use two types of Fuzzy Systems: the Takagi-Sugeno-Kang, characterized by the achievement of high accuracy in the model, and the Mamdani, characterized by high accuracy and the ease of interpreting the linguistic rules that control the behavior of the fuzzy system. To obtain a good knowledge base, two learning methods have been proposed: the “Adaptive neuro-fuzzy inference system” and the “Ad Hoc data-driven generation”. These combinations of fuzzy systems and learning methods have allowed us to obtain two models of high concentrator photovoltaic modules, which include two improvements over previous models: an increase in the model accuracy and the possibility of deducing the relationship between the main meteorological parameters and the maximum power output of a module.

Suggested Citation

  • Manuel Angel Gadeo-Martos & Antonio Jesús Yuste-Delgado & Florencia Almonacid Cruz & Jose-Angel Fernandez-Prieto & Joaquin Canada-Bago, 2019. "Modeling a High Concentrator Photovoltaic Module Using Fuzzy Rule-Based Systems," Energies, MDPI, vol. 12(3), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:567-:d:205130
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/567/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/567/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Almonacid, F. & Pérez-Higueras, P. & Rodrigo, P. & Hontoria, L., 2013. "Generation of ambient temperature hourly time series for some Spanish locations by artificial neural networks," Renewable Energy, Elsevier, vol. 51(C), pages 285-291.
    2. Fernández, Eduardo F. & Almonacid, Florencia & Garcia-Loureiro, Antonio J., 2015. "Multi-junction solar cells electrical characterization by neuronal networks under different irradiance, spectrum and cell temperature," Energy, Elsevier, vol. 90(P1), pages 846-856.
    3. Patra, Jagdish C. & Maskell, Douglas L., 2012. "Modeling of multi-junction solar cells for estimation of EQE under influence of charged particles using artificial neural networks," Renewable Energy, Elsevier, vol. 44(C), pages 7-16.
    4. Fernández, Eduardo F. & Almonacid, Florencia, 2014. "Spectrally corrected direct normal irradiance based on artificial neural networks for high concentrator photovoltaic applications," Energy, Elsevier, vol. 74(C), pages 941-949.
    5. Almonacid, F. & Rus, C. & Pérez-Higueras, P. & Hontoria, L., 2011. "Calculation of the energy provided by a PV generator. Comparative study: Conventional methods vs. artificial neural networks," Energy, Elsevier, vol. 36(1), pages 375-384.
    6. Almonacid, F. & Rus, C. & Hontoria, L. & Muñoz, F.J., 2010. "Characterisation of PV CIS module by artificial neural networks. A comparative study with other methods," Renewable Energy, Elsevier, vol. 35(5), pages 973-980.
    7. Almonacid, F. & Rus, C. & Hontoria, L. & Fuentes, M. & Nofuentes, G., 2009. "Characterisation of Si-crystalline PV modules by artificial neural networks," Renewable Energy, Elsevier, vol. 34(4), pages 941-949.
    8. Rodrigo, P. & Fernández, E.F. & Almonacid, F. & Pérez-Higueras, P.J., 2014. "Review of methods for the calculation of cell temperature in high concentration photovoltaic modules for electrical characterization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 478-488.
    9. Almonacid, F. & Fernández, Eduardo F. & Rodrigo, P. & Pérez-Higueras, P.J. & Rus-Casas, C., 2013. "Estimating the maximum power of a High Concentrator Photovoltaic (HCPV) module using an Artificial Neural Network," Energy, Elsevier, vol. 53(C), pages 165-172.
    10. García-Domingo, B. & Piliougine, M. & Elizondo, D. & Aguilera, J., 2015. "CPV module electric characterisation by artificial neural networks," Renewable Energy, Elsevier, vol. 78(C), pages 173-181.
    11. Shanks, Katie & Senthilarasu, S. & Mallick, Tapas K., 2016. "Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 394-407.
    12. Almonacid, F. & Rus, C. & Pérez, P.J. & Hontoria, L., 2009. "Estimation of the energy of a PV generator using artificial neural network," Renewable Energy, Elsevier, vol. 34(12), pages 2743-2750.
    13. Rodrigo, P. & Fernández, E.F. & Almonacid, F. & Pérez-Higueras, P.J., 2013. "Models for the electrical characterization of high concentration photovoltaic cells and modules: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 752-760.
    14. Almonacid, F. & Fernández, E.F. & Mallick, T.K. & Pérez-Higueras, P.J., 2015. "High concentrator photovoltaic module simulation by neuronal networks using spectrally corrected direct normal irradiance and cell temperature," Energy, Elsevier, vol. 84(C), pages 336-343.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Almonacid, Florencia & Fernandez, Eduardo F. & Mellit, Adel & Kalogirou, Soteris, 2017. "Review of techniques based on artificial neural networks for the electrical characterization of concentrator photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 938-953.
    2. Almonacid, F. & Fernández, E.F. & Mallick, T.K. & Pérez-Higueras, P.J., 2015. "High concentrator photovoltaic module simulation by neuronal networks using spectrally corrected direct normal irradiance and cell temperature," Energy, Elsevier, vol. 84(C), pages 336-343.
    3. Almonacid, Florencia & Rodrigo, Pedro & Fernández, Eduardo F., 2016. "Determination of the current–voltage characteristics of concentrator systems by using different adapted conventional techniques," Energy, Elsevier, vol. 101(C), pages 146-160.
    4. Fernández, Eduardo F. & Almonacid, Florencia, 2014. "Spectrally corrected direct normal irradiance based on artificial neural networks for high concentrator photovoltaic applications," Energy, Elsevier, vol. 74(C), pages 941-949.
    5. Rodrigo, P. & Fernández, E.F. & Almonacid, F. & Pérez-Higueras, P.J., 2013. "Models for the electrical characterization of high concentration photovoltaic cells and modules: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 752-760.
    6. Fernández, Eduardo F. & Almonacid, Florencia & Garcia-Loureiro, Antonio J., 2015. "Multi-junction solar cells electrical characterization by neuronal networks under different irradiance, spectrum and cell temperature," Energy, Elsevier, vol. 90(P1), pages 846-856.
    7. Fernández, Eduardo F. & Talavera, D.L. & Almonacid, Florencia M. & Smestad, Greg P., 2016. "Investigating the impact of weather variables on the energy yield and cost of energy of grid-connected solar concentrator systems," Energy, Elsevier, vol. 106(C), pages 790-801.
    8. Almonacid, F. & Fernández, Eduardo F. & Rodrigo, P. & Pérez-Higueras, P.J. & Rus-Casas, C., 2013. "Estimating the maximum power of a High Concentrator Photovoltaic (HCPV) module using an Artificial Neural Network," Energy, Elsevier, vol. 53(C), pages 165-172.
    9. Chen, Zhicong & Yu, Hui & Luo, Linlu & Wu, Lijun & Zheng, Qiao & Wu, Zhenhui & Cheng, Shuying & Lin, Peijie, 2021. "Rapid and accurate modeling of PV modules based on extreme learning machine and large datasets of I-V curves," Applied Energy, Elsevier, vol. 292(C).
    10. Chin, Vun Jack & Salam, Zainal & Ishaque, Kashif, 2015. "Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review," Applied Energy, Elsevier, vol. 154(C), pages 500-519.
    11. Samuel R. Fahim & Hany M. Hasanien & Rania A. Turky & Shady H. E. Abdel Aleem & Martin Ćalasan, 2022. "A Comprehensive Review of Photovoltaic Modules Models and Algorithms Used in Parameter Extraction," Energies, MDPI, vol. 15(23), pages 1-56, November.
    12. Yaser I. Alamin & Mensah K. Anaty & José Domingo Álvarez Hervás & Khalid Bouziane & Manuel Pérez García & Reda Yaagoubi & María del Mar Castilla & Merouan Belkasmi & Mohammed Aggour, 2020. "Very Short-Term Power Forecasting of High Concentrator Photovoltaic Power Facility by Implementing Artificial Neural Network," Energies, MDPI, vol. 13(13), pages 1-16, July.
    13. Almonacid, F. & Rus, C. & Pérez-Higueras, P. & Hontoria, L., 2011. "Calculation of the energy provided by a PV generator. Comparative study: Conventional methods vs. artificial neural networks," Energy, Elsevier, vol. 36(1), pages 375-384.
    14. Piliougine, Michel & Elizondo, David & Mora-López, Llanos & Sidrach-de-Cardona, Mariano, 2013. "Multilayer perceptron applied to the estimation of the influence of the solar spectral distribution on thin-film photovoltaic modules," Applied Energy, Elsevier, vol. 112(C), pages 610-617.
    15. García-Domingo, B. & Piliougine, M. & Elizondo, D. & Aguilera, J., 2015. "CPV module electric characterisation by artificial neural networks," Renewable Energy, Elsevier, vol. 78(C), pages 173-181.
    16. Li, Guiqiang & Xuan, Qingdong & Pei, Gang & Su, Yuehong & Ji, Jie, 2018. "Effect of non-uniform illumination and temperature distribution on concentrating solar cell - A review," Energy, Elsevier, vol. 144(C), pages 1119-1136.
    17. Karabacak, Kerim & Cetin, Numan, 2014. "Artificial neural networks for controlling wind–PV power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 804-827.
    18. Rodrigo, Pedro M. & Velázquez, Ramiro & Fernández, Eduardo F. & Almonacid, Florencia M. & Lay-Ekuakille, Aimé, 2018. "A method for the outdoor thermal characterisation of high-concentrator photovoltaic modules alternative to the IEC 62670-3 standard," Energy, Elsevier, vol. 148(C), pages 159-168.
    19. Yadav, Amit Kumar & Chandel, S.S., 2017. "Identification of relevant input variables for prediction of 1-minute time-step photovoltaic module power using Artificial Neural Network and Multiple Linear Regression Models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 955-969.
    20. Rodrigo, P. & Fernández, E.F. & Almonacid, F. & Pérez-Higueras, P.J., 2014. "Review of methods for the calculation of cell temperature in high concentration photovoltaic modules for electrical characterization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 478-488.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:567-:d:205130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.