IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v63y2014icp98-108.html
   My bibliography  Save this article

Heat loss characteristics study of a trapezoidal cavity absorber with and without plate for a linear Fresnel reflector solar concentrator system

Author

Listed:
  • Manikumar, R.
  • Valan Arasu, A.

Abstract

The numerical and experimental studies are conducted to analyze the heat loss in the cavity absorbers of linear Fresnel reflecting solar concentrator (LFRSC). The cavity is trapezoidal shape in cross section, which is placed at focus of the concentrator, has multiple tubes and water is used as the working fluid. The upper surface of the cavity has two models; with copper plate, above which absorber tubes are placed together and without copper plate i.e. absorber tubes alone without copper plate underneath. In both the models, the heat loss coefficient of projected absorber surfaces is analyzed with and without black chrome coating. For the numerical simulation of the trapezoidal cavity absorber, ANSYS FLUENT 12.0 version is used to develop the two dimensional model with non-Boussinesq numerical approximation. For the experimental study, two cavity absorbers are designed for operating in conjunction with a LFRSC experimental set up for the area of 4.0 m2. The overall heat loss coefficients are also estimated analytically by cavity correlations. The trend of variation of estimated heat loss coefficient by both methods is similar to experimental values. Also, estimated values by numerical study are very close to analytical and experimental values and the numerical model can be used for further analysis.

Suggested Citation

  • Manikumar, R. & Valan Arasu, A., 2014. "Heat loss characteristics study of a trapezoidal cavity absorber with and without plate for a linear Fresnel reflector solar concentrator system," Renewable Energy, Elsevier, vol. 63(C), pages 98-108.
  • Handle: RePEc:eee:renene:v:63:y:2014:i:c:p:98-108
    DOI: 10.1016/j.renene.2013.09.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113004722
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.09.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sharma, M. S. & Mathur, S. S. & Singh, R. N., 1983. "Performance analysis of a linear solar concentrator under different flow regimes," Applied Energy, Elsevier, vol. 13(1), pages 77-81, January.
    2. Singh, Panna Lal & Sarviya, R.M. & Bhagoria, J.L., 2010. "Thermal performance of linear Fresnel reflecting solar concentrator with trapezoidal cavity absorbers," Applied Energy, Elsevier, vol. 87(2), pages 541-550, February.
    3. Natarajan, Sendhil Kumar & Reddy, K.S. & Mallick, Tapas Kumar, 2012. "Heat loss characteristics of trapezoidal cavity receiver for solar linear concentrating system," Applied Energy, Elsevier, vol. 93(C), pages 523-531.
    4. Flores Larsen, S. & Altamirano, M. & Hernández, A., 2012. "Heat loss of a trapezoidal cavity absorber for a linear Fresnel reflecting solar concentrator," Renewable Energy, Elsevier, vol. 39(1), pages 198-206.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I – Fundamentals, design considerations and current technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1500-1565.
    2. Reddy, K.S. & Balaji, Shanmugapriya & Sundararajan, T., 2018. "Estimation of heat losses due to wind effects from linear parabolic secondary reflector –receiver of solar LFR module," Energy, Elsevier, vol. 150(C), pages 410-433.
    3. Abbas, R. & Martínez-Val, J.M., 2015. "Analytic optical design of linear Fresnel collectors with variable widths and shifts of mirrors," Renewable Energy, Elsevier, vol. 75(C), pages 81-92.
    4. Cheng, Ze-Dong & Zhao, Xue-Ru & He, Ya-Ling & Qiu, Yu, 2018. "A novel optical optimization model for linear Fresnel reflector concentrators," Renewable Energy, Elsevier, vol. 129(PA), pages 486-499.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Ze-Dong & Zhao, Xue-Ru & He, Ya-Ling & Qiu, Yu, 2018. "A novel optical optimization model for linear Fresnel reflector concentrators," Renewable Energy, Elsevier, vol. 129(PA), pages 486-499.
    2. Reddy, K.S. & Balaji, Shanmugapriya & Sundararajan, T., 2018. "Estimation of heat losses due to wind effects from linear parabolic secondary reflector –receiver of solar LFR module," Energy, Elsevier, vol. 150(C), pages 410-433.
    3. Qiu, Yu & He, Ya-Ling & Wu, Ming & Zheng, Zhang-Jing, 2016. "A comprehensive model for optical and thermal characterization of a linear Fresnel solar reflector with a trapezoidal cavity receiver," Renewable Energy, Elsevier, vol. 97(C), pages 129-144.
    4. Abbas, R. & Sebastián, A. & Montes, M.J. & Valdés, M., 2018. "Optical features of linear Fresnel collectors with different secondary reflector technologies," Applied Energy, Elsevier, vol. 232(C), pages 386-397.
    5. Abbas, R. & Martínez-Val, J.M., 2015. "Analytic optical design of linear Fresnel collectors with variable widths and shifts of mirrors," Renewable Energy, Elsevier, vol. 75(C), pages 81-92.
    6. Roostaee, Amin & Ameri, Mehran, 2019. "Effect of Linear Fresnel Concentrators field key parameters on reflectors configuration, Trapezoidal Cavity Receiver dimension, and heat loss," Renewable Energy, Elsevier, vol. 134(C), pages 1447-1464.
    7. Flores Larsen, S. & Altamirano, M. & Hernández, A., 2012. "Heat loss of a trapezoidal cavity absorber for a linear Fresnel reflecting solar concentrator," Renewable Energy, Elsevier, vol. 39(1), pages 198-206.
    8. Gupta, M.K. & Kaushik, S.C. & Ranjan, K.R. & Panwar, N.L. & Reddy, V. Siva & Tyagi, S.K., 2015. "Thermodynamic performance evaluation of solar and other thermal power generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 567-582.
    9. Dellicompagni, Pablo & Franco, Judith, 2019. "Potential uses of a prototype linear Fresnel concentration system," Renewable Energy, Elsevier, vol. 136(C), pages 1044-1054.
    10. Dabiri, Soroush & Khodabandeh, Erfan & Poorfar, Alireza Khoeini & Mashayekhi, Ramin & Toghraie, Davood & Abadian Zade, Seyed Ali, 2018. "Parametric investigation of thermal characteristic in trapezoidal cavity receiver for a linear Fresnel solar collector concentrator," Energy, Elsevier, vol. 153(C), pages 17-26.
    11. Rubén Gil & Carlos Monné & Nuria Bernal & Mariano Muñoz & Francisco Moreno, 2015. "Thermal Model of a Dish Stirling Cavity-Receiver," Energies, MDPI, vol. 8(2), pages 1-16, January.
    12. Andrade, L.A. & Barrozo, M.A.S. & Vieira, L.G.M., 2016. "A study on dynamic heating in solar dish concentrators," Renewable Energy, Elsevier, vol. 87(P1), pages 501-508.
    13. Ji-Qiang Li & Jeong-Tae Kwon & Seon-Jun Jang, 2020. "The Power and Efficiency Analyses of the Cylindrical Cavity Receiver on the Solar Stirling Engine," Energies, MDPI, vol. 13(21), pages 1-17, November.
    14. Hongn, Marcos & Flores Larsen, Silvana, 2018. "Hydrothermal model for small-scale linear Fresnel absorbers with non-uniform stepwise solar distribution," Applied Energy, Elsevier, vol. 223(C), pages 329-346.
    15. Sebastián, Andrés & Abbas, Rubén & Valdés, Manuel & Casanova, Jesús, 2018. "Innovative thermal storage strategies for Fresnel-based concentrating solar plants with East-West orientation," Applied Energy, Elsevier, vol. 230(C), pages 983-995.
    16. Karimi, Reza & Gheinani, Touraj Tavakoli & Madadi Avargani, Vahid, 2018. "A detailed mathematical model for thermal performance analysis of a cylindrical cavity receiver in a solar parabolic dish collector system," Renewable Energy, Elsevier, vol. 125(C), pages 768-782.
    17. Mostafa Ahmed & Ali Radwan & Ahmed Serageldin & Saim Memon & Takao Katsura & Katsunori Nagano, 2020. "Thermal Analysis of a New Sliding Smart Window Integrated with Vacuum Insulation, Photovoltaic, and Phase Change Material," Sustainability, MDPI, vol. 12(19), pages 1-21, September.
    18. Lecœuvre, Brice & Faggianelli, Ghjuvan Antone & Canaletti, Jean-Louis & Cristofari, Christian, 2020. "Assessment of a flexible solar hybrid thermal and electrical prototype," Renewable Energy, Elsevier, vol. 146(C), pages 1354-1363.
    19. Xie, W.T. & Dai, Y.J. & Wang, R.Z. & Sumathy, K., 2011. "Concentrated solar energy applications using Fresnel lenses: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2588-2606, August.
    20. Sait, Hani H. & Martinez-Val, Jose M. & Abbas, Ruben & Munoz-Anton, Javier, 2015. "Fresnel-based modular solar fields for performance/cost optimization in solar thermal power plants: A comparison with parabolic trough collectors," Applied Energy, Elsevier, vol. 141(C), pages 175-189.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:63:y:2014:i:c:p:98-108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.