IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v62y2014icp716-730.html
   My bibliography  Save this article

Experimental–numerical study of heat flow in deep low-enthalpy geothermal conditions

Author

Listed:
  • Saeid, Sanaz
  • Al-Khoury, Rafid
  • Nick, Hamidreza M.
  • Barends, Frans

Abstract

This paper presents an intensive experimental–numerical study of heat flow in a saturated porous domain. A temperature and a flow rate range compared to that existing in a typical deep low-enthalpy hydrothermal system is studied. Two main issues are examined: the effect of fluid density and viscosity on heat flow, and the significance and effect of thermal dispersion. Laboratory experiments on a saturated sand layer surrounded by two impermeable clay layers, subjected to different flow rates under cold and hot injection scenarios, and for both vertical and horizontal flow directions, are conducted. A temperature range between 20 °C and 60 °C is studied. The finite element method is utilized to analyze the experimental results. Backcalculations, comparing the numerical results to the experimental results, are conducted to quantify the magnitude of thermal dispersion. A constitutive model describing thermal dispersion in terms of fluid density, viscosity and pore geometry, taking into consideration different injection scenarios, is developed. This study demonstrates the importance of taking the variation of formation water density and viscosity with temperature into consideration in predicting the lifetime of deep low-enthalpy geothermal systems. It shows that if ignored, the lifetime of a system with hot injection will be overestimated, and that with cold injection, will be underestimated.

Suggested Citation

  • Saeid, Sanaz & Al-Khoury, Rafid & Nick, Hamidreza M. & Barends, Frans, 2014. "Experimental–numerical study of heat flow in deep low-enthalpy geothermal conditions," Renewable Energy, Elsevier, vol. 62(C), pages 716-730.
  • Handle: RePEc:eee:renene:v:62:y:2014:i:c:p:716-730
    DOI: 10.1016/j.renene.2013.08.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113004394
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.08.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wagner, Valentin & Bayer, Peter & Kübert, Markus & Blum, Philipp, 2012. "Numerical sensitivity study of thermal response tests," Renewable Energy, Elsevier, vol. 41(C), pages 245-253.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniilidis, Alexandros & Saeid, Sanaz & Doonechaly, Nima Gholizadeh, 2021. "The fault plane as the main fluid pathway: Geothermal field development options under subsurface and operational uncertainty," Renewable Energy, Elsevier, vol. 171(C), pages 927-946.
    2. Daniilidis, Alexandros & Alpsoy, Betül & Herber, Rien, 2017. "Impact of technical and economic uncertainties on the economic performance of a deep geothermal heat system," Renewable Energy, Elsevier, vol. 114(PB), pages 805-816.
    3. Saeid, Sanaz & Al-Khoury, Rafid & Nick, Hamidreza M. & Hicks, Michael A., 2015. "A prototype design model for deep low-enthalpy hydrothermal systems," Renewable Energy, Elsevier, vol. 77(C), pages 408-422.
    4. Willems, Cees J.L. & Nick, Hamidreza M. & Weltje, Gert Jan & Bruhn, David F., 2017. "An evaluation of interferences in heat production from low enthalpy geothermal doublets systems," Energy, Elsevier, vol. 135(C), pages 500-512.
    5. Santamarta, Juan C. & García-Gil, Alejandro & Expósito, María del Cristo & Casañas, Elías & Cruz-Pérez, Noelia & Rodríguez-Martín, Jesica & Mejías-Moreno, Miguel & Götzl, Gregor & Gemeni, Vasiliki, 2021. "The clean energy transition of heating and cooling in touristic infrastructures using shallow geothermal energy in the Canary Islands," Renewable Energy, Elsevier, vol. 171(C), pages 505-515.
    6. Willems, C.J.L. & M. Nick, H., 2019. "Towards optimisation of geothermal heat recovery: An example from the West Netherlands Basin," Applied Energy, Elsevier, vol. 247(C), pages 582-593.
    7. Babaei, Masoud & Nick, Hamidreza M., 2019. "Performance of low-enthalpy geothermal systems: Interplay of spatially correlated heterogeneity and well-doublet spacings," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Liu, Guihong & Pu, Hai & Zhao, Zhihong & Liu, Yanguang, 2019. "Coupled thermo-hydro-mechanical modeling on well pairs in heterogeneous porous geothermal reservoirs," Energy, Elsevier, vol. 171(C), pages 631-653.
    9. Ziabakhsh-Ganji, Zaman & Nick, Hamidreza M. & Donselaar, Marinus E. & Bruhn, David F., 2018. "Synergy potential for oil and geothermal energy exploitation," Applied Energy, Elsevier, vol. 212(C), pages 1433-1447.
    10. Li, Shengtao & Wen, Dongguang & Feng, Bo & Li, Fengyu & Yue, Dongdong & Zhang, Qiuxia & Wang, Junzhao & Feng, Zhaolong, 2023. "Numerical optimization of geothermal energy extraction from deep karst reservoir in North China," Renewable Energy, Elsevier, vol. 202(C), pages 1071-1085.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2015. "Ground energy balance for borehole heat exchangers: Vertical fluxes, groundwater and storage," Renewable Energy, Elsevier, vol. 83(C), pages 1341-1351.
    2. Raymond, J. & Lamarche, L., 2013. "Simulation of thermal response tests in a layered subsurface," Applied Energy, Elsevier, vol. 109(C), pages 293-301.
    3. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    4. Shangyuan Chen & Jinfeng Mao & Xu Han & Chaofeng Li & Liyao Liu, 2016. "Numerical Analysis of the Factors Influencing a Vertical U-Tube Ground Heat Exchanger," Sustainability, MDPI, vol. 8(9), pages 1-12, September.
    5. Tsubaki, Koutaro & Mitsutake, Yuichi, 2016. "Performance of ground-source heat exchangers using short residential foundation piles," Energy, Elsevier, vol. 104(C), pages 229-236.
    6. Jensen-Page, Linden & Narsilio, Guillermo A. & Bidarmaghz, Asal & Johnston, Ian W., 2018. "Investigation of the effect of seasonal variation in ground temperature on thermal response tests," Renewable Energy, Elsevier, vol. 125(C), pages 609-619.
    7. Louis Lamarche & Jasmin Raymond & Claude Hugo Koubikana Pambou, 2017. "Evaluation of the Internal and Borehole Resistances during Thermal Response Tests and Impact on Ground Heat Exchanger Design," Energies, MDPI, vol. 11(1), pages 1-17, December.
    8. Rashidi, Saman & Esfahani, Javad Abolfazli & Karimi, Nader, 2018. "Porous materials in building energy technologies—A review of the applications, modelling and experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 229-247.
    9. Jia, Jie & Lee, W.L. & Cheng, Yuanda, 2019. "Field demonstration of a first constant-temperature thermal response test with both heat injection and extraction for ground source heat pump systems," Applied Energy, Elsevier, vol. 249(C), pages 79-86.
    10. Pasquier, Philippe, 2018. "Interpretation of the first hours of a thermal response test using the time derivative of the temperature," Applied Energy, Elsevier, vol. 213(C), pages 56-75.
    11. Sebarchievici, Calin & Sarbu, Ioan, 2015. "Performance of an experimental ground-coupled heat pump system for heating, cooling and domestic hot-water operation," Renewable Energy, Elsevier, vol. 76(C), pages 148-159.
    12. Kalogirou, Soteris A. & Florides, Georgios A. & Pouloupatis, Panayiotis D. & Christodoulides, Paul & Joseph-Stylianou, Josephina, 2015. "Artificial neural networks for the generation of a conductivity map of the ground," Renewable Energy, Elsevier, vol. 77(C), pages 400-407.
    13. Casasso, Alessandro & Sethi, Rajandrea, 2015. "Modelling thermal recycling occurring in groundwater heat pumps (GWHPs)," Renewable Energy, Elsevier, vol. 77(C), pages 86-93.
    14. Luo, Jin & Rohn, Joachim & Xiang, Wei & Bayer, Manfred & Priess, Anna & Wilkmann, Lucas & Steger, Hagen & Zorn, Roman, 2015. "Experimental investigation of a borehole field by enhanced geothermal response test and numerical analysis of performance of the borehole heat exchangers," Energy, Elsevier, vol. 84(C), pages 473-484.
    15. Cardoso de Freitas Murari, Milena & de Hollanda Cavalcanti Tsuha, Cristina & Loveridge, Fleur, 2022. "Investigation on the thermal response of steel pipe energy piles with different backfill materials," Renewable Energy, Elsevier, vol. 199(C), pages 44-61.
    16. Han, Chanjuan & Yu, Xiong (Bill), 2016. "Performance of a residential ground source heat pump system in sedimentary rock formation," Applied Energy, Elsevier, vol. 164(C), pages 89-98.
    17. Anis Akrouch, Ghassan & Sánchez, Marcelo & Briaud, Jean-Louis, 2020. "Thermal performance and economic study of an energy piles system under cooling dominated conditions," Renewable Energy, Elsevier, vol. 147(P2), pages 2736-2747.
    18. Zhang, Changxing & Song, Wei & Sun, Shicai & Peng, Donggen, 2015. "Parameter estimation of in-situ thermal response test with unstable heat rate," Energy, Elsevier, vol. 88(C), pages 497-505.
    19. Shohei Kaneko & Akira Tomigashi & Takeshi Ishihara & Gaurav Shrestha & Mayumi Yoshioka & Youhei Uchida, 2020. "Proposal for a Method Predicting Suitable Areas for Installation of Ground-Source Heat Pump Systems Based on Response Surface Methodology," Energies, MDPI, vol. 13(8), pages 1-18, April.
    20. Zhang, Changxing & Xu, Hang & Fan, Jianhua & Sun, Pengkun & Sun, Shicai & Kong, Xiangqiang, 2020. "The coupled two-step parameter estimation procedure for borehole thermal resistance in thermal response test," Renewable Energy, Elsevier, vol. 154(C), pages 672-683.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:62:y:2014:i:c:p:716-730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.