IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v62y2014icp522-526.html
   My bibliography  Save this article

Direct conversion of cassava starch into single cell oil by co-cultures of the oleaginous yeast Rhodosporidium toruloides and immobilized amylases-producing yeast Saccharomycopsis fibuligera

Author

Listed:
  • Gen, Qian
  • Wang, Qi
  • Chi, Zhen-Ming

Abstract

Some strains of Rhodosporidium toruloides can produce high concentrations of single cell oil. However, this oleaginous yeast does not produce amylases. Cells of the amylase-producing yeast Saccharomycopsis fibuligera A11-c were immobilized using polyvinyl alcohol. The immobilized yeast could produce 325 U/ml of amylase activity within 72 h of incubation. These amylases hydrolyzed cassava starch and the resulting product was converted into single cell oil by R. toruloides 21167. In a 2-l co-culture bioreactor, a single cell oil yield (64.9% w/w) from a cell mass of R. toruloides 21167 (20.1 g/l) were produced from cassava starch (6.0% w/v). Over 96% of the fatty acids produced were C16:0, C18:0, C18:1 and C18:2, useful for conversion into biodiesel.

Suggested Citation

  • Gen, Qian & Wang, Qi & Chi, Zhen-Ming, 2014. "Direct conversion of cassava starch into single cell oil by co-cultures of the oleaginous yeast Rhodosporidium toruloides and immobilized amylases-producing yeast Saccharomycopsis fibuligera," Renewable Energy, Elsevier, vol. 62(C), pages 522-526.
  • Handle: RePEc:eee:renene:v:62:y:2014:i:c:p:522-526
    DOI: 10.1016/j.renene.2013.08.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113004187
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.08.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Qi & Guo, Feng-Jun & Rong, Yan-Jun & Chi, Zhen-Ming, 2012. "Lipid production from hydrolysate of cassava starch by Rhodosporidium toruloides 21167 for biodiesel making," Renewable Energy, Elsevier, vol. 46(C), pages 164-168.
    2. Meng, Xin & Yang, Jianming & Xu, Xin & Zhang, Lei & Nie, Qingjuan & Xian, Mo, 2009. "Biodiesel production from oleaginous microorganisms," Renewable Energy, Elsevier, vol. 34(1), pages 1-5.
    3. Zhang, H.L. & Baeyens, J. & Tan, T.W., 2012. "Mixing phenomena in a large-scale fermenter of starch to bio-ethanol," Energy, Elsevier, vol. 48(1), pages 380-391.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patel, Alok & Arora, Neha & Mehtani, Juhi & Pruthi, Vikas & Pruthi, Parul A., 2017. "Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 604-616.
    2. Patel, Alok & Arora, Neha & Sartaj, Km & Pruthi, Vikas & Pruthi, Parul A., 2016. "Sustainable biodiesel production from oleaginous yeasts utilizing hydrolysates of various non-edible lignocellulosic biomasses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 836-855.
    3. Patel, Alok & Pruthi, Vikas & Pruthi, Parul A., 2017. "Synchronized nutrient stress conditions trigger the diversion of CDP-DG pathway of phospholipids synthesis towards de novo TAG synthesis in oleaginous yeast escalating biodiesel production," Energy, Elsevier, vol. 139(C), pages 962-974.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patel, Alok & Arora, Neha & Mehtani, Juhi & Pruthi, Vikas & Pruthi, Parul A., 2017. "Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 604-616.
    2. Patel, Alok & Arora, Neha & Sartaj, Km & Pruthi, Vikas & Pruthi, Parul A., 2016. "Sustainable biodiesel production from oleaginous yeasts utilizing hydrolysates of various non-edible lignocellulosic biomasses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 836-855.
    3. Zhang, Xiaolei & Yan, Song & Tyagi, Rajeshwar D. & Surampalli, RaoY. & Valéro, Jose R., 2014. "Wastewater sludge as raw material for microbial oils production," Applied Energy, Elsevier, vol. 135(C), pages 192-201.
    4. Sánchez-Bayo, Alejandra & López-Chicharro, Daniel & Morales, Victoria & Espada, Juan José & Puyol, Daniel & Martínez, Fernando & Astals, Sergi & Vicente, Gemma & Bautista, Luis Fernando & Rodríguez, R, 2020. "Biodiesel and biogas production from Isochrysis galbana using dry and wet lipid extraction: A biorefinery approach," Renewable Energy, Elsevier, vol. 146(C), pages 188-195.
    5. Siwina, Siraprapha & Leesing, Ratanaporn, 2021. "Bioconversion of durian (Durio zibethinus Murr.) peel hydrolysate into biodiesel by newly isolated oleaginous yeast Rhodotorula mucilaginosa KKUSY14," Renewable Energy, Elsevier, vol. 163(C), pages 237-245.
    6. Zhang, X.L. & Yan, S. & Tyagi, R.D. & Surampalli, R.Y., 2013. "Biodiesel production from heterotrophic microalgae through transesterification and nanotechnology application in the production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 216-223.
    7. Duarte, M. Salomé & Sinisgalli, Erika & Cavaleiro, Ana J. & Bertin, Lorenzo & Alves, M. Madalena & Pereira, M. Alcina, 2021. "Intensification of methane production from waste frying oil in a biogas-lift bioreactor," Renewable Energy, Elsevier, vol. 168(C), pages 1141-1148.
    8. Marco Castellini & Stefano Ubertini & Diego Barletta & Ilaria Baffo & Pietro Buzzini & Marco Barbanera, 2021. "Techno-Economic Analysis of Biodiesel Production from Microbial Oil Using Cardoon Stalks as Carbon Source," Energies, MDPI, vol. 14(5), pages 1-21, March.
    9. Ullah, Zahoor & Bustam, Mohamad Azmi & Man, Zakaria, 2015. "Biodiesel production from waste cooking oil by acidic ionic liquid as a catalyst," Renewable Energy, Elsevier, vol. 77(C), pages 521-526.
    10. Nouri, Hoda & Moghimi, Hamid & Nikbakht Rad, Mahzad & Ostovar, Marjan & Farazandeh Mehr, Shima Sadat & Ghanaatian, Fateme & Talebi, Ahmad Farhad, 2019. "Enhanced growth and lipid production in oleaginous fungus, Sarocladium kiliense ADH17: Study on fatty acid profiling and prediction of biodiesel properties," Renewable Energy, Elsevier, vol. 135(C), pages 10-20.
    11. Guldhe, Abhishek & Singh, Poonam & Kumari, Sheena & Rawat, Ismail & Permaul, Kugen & Bux, Faizal, 2016. "Biodiesel synthesis from microalgae using immobilized Aspergillus niger whole cell lipase biocatalyst," Renewable Energy, Elsevier, vol. 85(C), pages 1002-1010.
    12. Mondala, Andro & Hernandez, Rafael & French, Todd & Green, Magan & McFarland, Linda & Ingram, Lonnie, 2015. "Enhanced microbial oil production by activated sludge microorganisms from sugarcane bagasse hydrolyzate," Renewable Energy, Elsevier, vol. 78(C), pages 114-118.
    13. Manzano-Agugliaro, F. & Sanchez-Muros, M.J. & Barroso, F.G. & Martínez-Sánchez, A. & Rojo, S. & Pérez-Bañón, C., 2012. "Insects for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3744-3753.
    14. Hwei Voon Lee & Joon Ching Juan & Taufiq-Yap Yun Hin & Hwai Chyuan Ong, 2016. "Environment-Friendly Heterogeneous Alkaline-Based Mixed Metal Oxide Catalysts for Biodiesel Production," Energies, MDPI, vol. 9(8), pages 1-12, August.
    15. Chen, Jiaxin & Li, Ji & Dong, Wenyi & Zhang, Xiaolei & Tyagi, Rajeshwar D. & Drogui, Patrick & Surampalli, Rao Y., 2018. "The potential of microalgae in biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 336-346.
    16. Smichi, Neila & Messaoudi, Yosra & Ksouri, Riadh & Abdelly, Chedly & Gargouri, Mohamed, 2014. "Pretreatment and enzymatic saccharification of new phytoresource for bioethanol production from halophyte species," Renewable Energy, Elsevier, vol. 63(C), pages 544-549.
    17. Agata Jabłońska-Trypuć & Elżbieta Wołejko & Mahmudova Dildora Ernazarovna & Aleksandra Głowacka & Gabriela Sokołowska & Urszula Wydro, 2023. "Using Algae for Biofuel Production: A Review," Energies, MDPI, vol. 16(4), pages 1-23, February.
    18. Arora, Neha & Patel, Alok & Pruthi, Parul A. & Poluri, Krishna Mohan & Pruthi, Vikas, 2018. "Utilization of stagnant non-potable pond water for cultivating oleaginous microalga Chlorella minutissima for biodiesel production," Renewable Energy, Elsevier, vol. 126(C), pages 30-37.
    19. Carriquiry, Miguel A. & Du, Xiaodong & Timilsina, Govinda R., 2011. "Second generation biofuels: Economics and policies," Energy Policy, Elsevier, vol. 39(7), pages 4222-4234, July.
    20. Taskin, Mesut & Ortucu, Serkan & Aydogan, Mehmet Nuri & Arslan, Nazli Pinar, 2016. "Lipid production from sugar beet molasses under non-aseptic culture conditions using the oleaginous yeast Rhodotorula glutinis TR29," Renewable Energy, Elsevier, vol. 99(C), pages 198-204.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:62:y:2014:i:c:p:522-526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.