IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v50y2013icp988-993.html

High temperature calorimetry and use of magnesium chloride for thermal energy storage

Author

Listed:
  • Zhao, Weihuan
  • Zheng, Ying
  • Sabol, Joseph C.
  • Tuzla, Kemal
  • Neti, Sudhakar
  • Oztekin, Alparslan
  • Chen, John C.

Abstract

The primary objective of this study is to develop encapsulated phase change materials (EPCMs) capable of storing thermal energy at temperatures above 750 °C. EPCM with magnesium chloride as phase change material (PCM) are considered here for application in concentrated solar power (CSP) systems. MgCl2 is an effective storage medium because of its high melting temperature, 714 °C, and high latent heat of fusion, 454 kJ/kg. A specialized calorimeter with requisite size and high temperature capability is designed and built to prove the storage capability of MgCl2 EPCM. The calorimeter is also used to determine heat capacities for MgCl2 in both liquid and solid states as well as its latent heat of fusion. Calorimetric tests for the thermal storage capacities of three MgCl2 EPCM samples show excellent agreement with published data. Based on the measured properties, the latent heat of phase change can contribute about 84% of the storage capacity of MgCl2 PCM for a 100 °C temperature swing bracketing the salt's melting point. Repeated thermal-cycles show sustained performance of MgCl2 EPCM capsules with no discernible diminishment in storage capacity.

Suggested Citation

  • Zhao, Weihuan & Zheng, Ying & Sabol, Joseph C. & Tuzla, Kemal & Neti, Sudhakar & Oztekin, Alparslan & Chen, John C., 2013. "High temperature calorimetry and use of magnesium chloride for thermal energy storage," Renewable Energy, Elsevier, vol. 50(C), pages 988-993.
  • Handle: RePEc:eee:renene:v:50:y:2013:i:c:p:988-993
    DOI: 10.1016/j.renene.2012.08.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811200506X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.08.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kenisarin, Murat & Mahkamov, Khamid, 2007. "Solar energy storage using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 1913-1965, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Solomon, Laura & Elmozughi, Ali F. & Oztekin, Alparslan & Neti, Sudhakar, 2015. "Effect of internal void placement on the heat transfer performance – Encapsulated phase change material for energy storage," Renewable Energy, Elsevier, vol. 78(C), pages 438-447.
    2. Amaral, C. & Vicente, R. & Marques, P.A.A.P. & Barros-Timmons, A., 2017. "Phase change materials and carbon nanostructures for thermal energy storage: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1212-1228.
    3. Songgang Qiu & Laura Solomon & Garrett Rinker, 2017. "Development of an Integrated Thermal Energy Storage and Free-Piston Stirling Generator for a Concentrating Solar Power System," Energies, MDPI, vol. 10(9), pages 1-17, September.
    4. Jacob, Rhys & Bruno, Frank, 2015. "Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 79-87.
    5. Gupta, Rajan & Shinde, Shraddha & Yella, Aswani & Subramaniam, C. & Saha, Sandip K., 2020. "Thermomechanical characterisations of PTFE, PEEK, PEKK as encapsulation materials for medium temperature solar applications," Energy, Elsevier, vol. 194(C).
    6. Jacob, Rhys & Belusko, Martin & Liu, Ming & Saman, Wasim & Bruno, Frank, 2019. "Using renewables coupled with thermal energy storage to reduce natural gas consumption in higher temperature commercial/industrial applications," Renewable Energy, Elsevier, vol. 131(C), pages 1035-1046.
    7. Zhu, Ming & Nan, Wenguang & Wang, Yueshe, 2023. "Analysis on the thermal behaviour of the latent heat storage system using S-CO2 and H-PCM," Renewable Energy, Elsevier, vol. 208(C), pages 240-250.
    8. Songgang Qiu & Laura Solomon & Ming Fang, 2018. "Study of Material Compatibility for a Thermal Energy Storage System with Phase Change Material," Energies, MDPI, vol. 11(3), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    2. Liu, Ming & Saman, Wasim & Bruno, Frank, 2012. "Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2118-2132.
    3. Hu, Wen & Yu, Xun, 2014. "Thermal and mechanical properties of bio-based PCMs encapsulated with nanofibrous structure," Renewable Energy, Elsevier, vol. 62(C), pages 454-458.
    4. Xia, L. & Zhang, P. & Wang, R.Z., 2010. "Numerical heat transfer analysis of the packed bed latent heat storage system based on an effective packed bed model," Energy, Elsevier, vol. 35(5), pages 2022-2032.
    5. Fan, Li-Wu & Fang, Xin & Wang, Xiao & Zeng, Yi & Xiao, Yu-Qi & Yu, Zi-Tao & Xu, Xu & Hu, Ya-Cai & Cen, Ke-Fa, 2013. "Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials," Applied Energy, Elsevier, vol. 110(C), pages 163-172.
    6. Bąk, Agnieszka & Pławecka, Kinga & Bazan, Patrycja & Łach, Michał, 2023. "Influence of the addition of phase change materials on thermal insulation properties of foamed geopolymer structures based on fly ash," Energy, Elsevier, vol. 278(C).
    7. Zhang, Chengbin & Li, Jie & Chen, Yongping, 2020. "Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins," Applied Energy, Elsevier, vol. 259(C).
    8. Wang, Weilong & Yang, Xiaoxi & Fang, Yutang & Ding, Jing, 2009. "Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid-liquid phase change materials," Applied Energy, Elsevier, vol. 86(2), pages 170-174, February.
    9. Bal, Lalit M. & Satya, Santosh & Naik, S.N., 2010. "Solar dryer with thermal energy storage systems for drying agricultural food products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2298-2314, October.
    10. Rao, A. Gangoli & van den Oudenalder, F.S.C. & Klein, S.A., 2019. "Natural gas displacement by wind curtailment utilization in combined-cycle power plants," Energy, Elsevier, vol. 168(C), pages 477-491.
    11. Solomon, Laura & Elmozughi, Ali F. & Oztekin, Alparslan & Neti, Sudhakar, 2015. "Effect of internal void placement on the heat transfer performance – Encapsulated phase change material for energy storage," Renewable Energy, Elsevier, vol. 78(C), pages 438-447.
    12. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    13. Wong-Pinto, Liey-Si & Milian, Yanio & Ushak, Svetlana, 2020. "Progress on use of nanoparticles in salt hydrates as phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    14. Memon, Shazim Ali, 2014. "Phase change materials integrated in building walls: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 870-906.
    15. Suchanun Wisutthimateekorn & Nuttapol Lerkkasemsan, 2021. "A Study of Eutectic Temperature of Sugar Mixture for Thermal Energy Storage," Energies, MDPI, vol. 14(16), pages 1-14, August.
    16. Nadezhda S. Bondareva & Mohammad Ghalambaz & Mikhail A. Sheremet, 2021. "Influence of the Fin Shape on Heat Transport in Phase Change Material Heat Sink with Constant Heat Loads," Energies, MDPI, vol. 14(5), pages 1-15, March.
    17. Randeep Singh & Sadegh Sadeghi & Bahman Shabani, 2018. "Thermal Conductivity Enhancement of Phase Change Materials for Low-Temperature Thermal Energy Storage Applications," Energies, MDPI, vol. 12(1), pages 1-20, December.
    18. Royo, Patricia & Ferreira, Víctor J. & López-Sabirón, Ana M. & Ferreira, Germán, 2016. "Hybrid diagnosis to characterise the energy and environmental enhancement of photovoltaic modules using smart materials," Energy, Elsevier, vol. 101(C), pages 174-189.
    19. Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Chen, Chuanqi & Wang, Tengyue & Liang, Lin, 2022. "Visualization experiment and numerical study of latent heat storage unit using micro-heat pipe arrays: Melting process," Energy, Elsevier, vol. 246(C).
    20. He, Fang & Wang, Xiaodong & Wu, Dezhen, 2014. "New approach for sol–gel synthesis of microencapsulated n-octadecane phase change material with silica wall using sodium silicate precursor," Energy, Elsevier, vol. 67(C), pages 223-233.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:50:y:2013:i:c:p:988-993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.