IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v50y2013icp833-839.html
   My bibliography  Save this article

Seashore mallow (Kosteletzkya pentacarpos) as a salt-tolerant feedstock for production of biodiesel and ethanol

Author

Listed:
  • Moser, Bryan R.
  • Dien, Bruce S.
  • Seliskar, Denise M.
  • Gallagher, John L.

Abstract

Seashore mallow (Kosteletzkya pentacarpos) is a non-invasive perennial nonclonal halophytic oilseed-producing dicot that was investigated as a feedstock for production of biodiesel from seeds and ethanol from residual stem biomass. Seashore mallow seeds contained 19.3 mass % oil, which after extraction with hexane and pretreatment with catalytic sulfuric acid was converted into methyl esters in 94 mass % yield utilizing homogenous base catalysis. The principal components identified were methyl linoleate (48.9%), palmitate (24.4%) and oleate (18.3%). Fuel properties were characterized and compared to biodiesel standards ASTM D6751 and EN 14214. Also investigated were blends with petrodiesel. Lastly, seashore mallow stems were rich in neutral carbohydrates (51.8 mass %). After simultaneous saccharification and fermentation employing a native Saccharomyces cerevisiae yeast strain, the stems provided ethanol and xylose yields of 104 g/kg and 47.8 g/kg, respectively. Of the four pretreatment methodologies explored, dilute ammonium hydroxide provided the highest yield of sugars.

Suggested Citation

  • Moser, Bryan R. & Dien, Bruce S. & Seliskar, Denise M. & Gallagher, John L., 2013. "Seashore mallow (Kosteletzkya pentacarpos) as a salt-tolerant feedstock for production of biodiesel and ethanol," Renewable Energy, Elsevier, vol. 50(C), pages 833-839.
  • Handle: RePEc:eee:renene:v:50:y:2013:i:c:p:833-839
    DOI: 10.1016/j.renene.2012.08.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112004867
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.08.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moser, Bryan R., 2011. "Influence of extended storage on fuel properties of methyl esters prepared from canola, palm, soybean and sunflower oils," Renewable Energy, Elsevier, vol. 36(4), pages 1221-1226.
    2. Moser, Bryan R., 2012. "Efficacy of gossypol as an antioxidant additive in biodiesel," Renewable Energy, Elsevier, vol. 40(1), pages 65-70.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pulidindi, Indra Neel & Kimchi, Baruchi B. & Gedanken, Aharon, 2014. "Can cellulose be a sustainable feedstock for bioethanol production?," Renewable Energy, Elsevier, vol. 71(C), pages 77-80.
    2. Moser, Bryan R., 2016. "Fuel property enhancement of biodiesel fuels from common and alternative feedstocks via complementary blending," Renewable Energy, Elsevier, vol. 85(C), pages 819-825.
    3. J. Jed Brown & Probir Das & Mohammad Al-Saidi, 2018. "Sustainable Agriculture in the Arabian/Persian Gulf Region Utilizing Marginal Water Resources: Making the Best of a Bad Situation," Sustainability, MDPI, vol. 10(5), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pattamaprom, C. & Pakdee, W. & Ngamjaroen, S., 2012. "Storage degradation of palm-derived biodiesels: Its effects on chemical properties and engine performance," Renewable Energy, Elsevier, vol. 37(1), pages 412-418.
    2. Chen, Wei & Ma, Lin & Zhou, Peng-peng & Zhu, Yuan-min & Wang, Xiao-peng & Luo, Xin-an & Bao, Zhen-dong & Yu, Long-jiang, 2015. "A novel feedstock for biodiesel production: The application of palmitic acid from Schizochytrium," Energy, Elsevier, vol. 86(C), pages 128-138.
    3. Sorate, Kamalesh A. & Bhale, Purnanand V., 2015. "Biodiesel properties and automotive system compatibility issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 777-798.
    4. Diana da Silva Araújo, Francisca & Araújo, Iranildo C. & Costa, Isabella Cristhina G. & Rodarte de Moura, Carla Verônica & Chaves, Mariana H. & Araújo, Eugênio Celso E., 2014. "Study of degumming process and evaluation of oxidative stability of methyl and ethyl biodiesel of Jatropha curcas L. oil from three different Brazilian states," Renewable Energy, Elsevier, vol. 71(C), pages 495-501.
    5. Norwazan Abdul Rahim & Mohammad Nazri Mohd Jaafar & Syazwana Sapee & Hazir Farouk Elraheem, 2016. "Effect on Particulate and Gas Emissions by Combusting Biodiesel Blend Fuels Made from Different Plant Oil Feedstocks in a Liquid Fuel Burner," Energies, MDPI, vol. 9(8), pages 1-18, August.
    6. Cavalheiro, Leandro Fontoura & Misutsu, Marcelo Yukio & Rial, Rafael Cardoso & Viana, Luíz Henrique & Oliveira, Lincoln Carlos Silva, 2020. "Characterization of residues and evaluation of the physico chemical properties of soybean biodiesel and biodiesel: Diesel blends in different storage conditions," Renewable Energy, Elsevier, vol. 151(C), pages 454-462.
    7. Renas Hasan Saeed Saeed & Youssef Kassem & Hüseyin Çamur, 2019. "Effect of Biodiesel Mixture Derived from Waste Frying-Corn, Frying-Canola-Corn and Canola-Corn Cooking Oils with Various ‎Ages on Physicochemical Properties," Energies, MDPI, vol. 12(19), pages 1-26, September.
    8. Youssef Kassem & Hüseyin Çamur & Ebaa Alassi, 2020. "Biodiesel Production from Four Residential Waste Frying Oils: Proposing Blends for Improving the Physicochemical Properties of Methyl Biodiesel," Energies, MDPI, vol. 13(16), pages 1-25, August.
    9. Moser, Bryan R., 2012. "Efficacy of gossypol as an antioxidant additive in biodiesel," Renewable Energy, Elsevier, vol. 40(1), pages 65-70.
    10. Amani, H. & Ahmad, Z. & Hameed, B.H., 2014. "Synthesis of fatty acid methyl esters via the methanolysis of palm oil over Ca3.5xZr0.5yAlxO3 mixed oxide catalyst," Renewable Energy, Elsevier, vol. 66(C), pages 680-685.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:50:y:2013:i:c:p:833-839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.