IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v44y2012icp340-358.html
   My bibliography  Save this article

A novel switched power filter-green plug (SPF-GP) scheme for wave energy systems

Author

Listed:
  • Ozkop, Emre
  • Altas, Ismail H.
  • Sharaf, Adel M.

Abstract

In this paper, a switched modulated power filter-green plug (SPF-GP) scheme for wave energy conversion (WEC) systems is presented. In order to reduce the interfacing power quality problems and improve the energy utilization of WEC systems, design and realization of a novel SPF-GP and effective control strategies are studied. To illustrate the effectiveness of the proposed techniques, a simulation model is developed in Matlab/Simulink/Simpower Software Environment. Besides, experimental prototype models of the proposed SPF-GP system and error driven controllers have been setup to verify the digital simulation model by comparing the results, which validate the effectiveness of the proposed interfacing device and the control algorithms. Both the simulation and the experiments were done for several cases and results of the same operating conditions from both platforms were compared for model validation as well as system performances. It has been shown that the proposed FACTS power filter compensator and control strategy developed by the third author are very effective on eliminating stochastic wave effects on load side voltage and load variations on source side by reducing voltage sags and swells.

Suggested Citation

  • Ozkop, Emre & Altas, Ismail H. & Sharaf, Adel M., 2012. "A novel switched power filter-green plug (SPF-GP) scheme for wave energy systems," Renewable Energy, Elsevier, vol. 44(C), pages 340-358.
  • Handle: RePEc:eee:renene:v:44:y:2012:i:c:p:340-358
    DOI: 10.1016/j.renene.2012.01.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811200136X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.01.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nema, Pragya & Nema, R.K. & Rangnekar, Saroj, 2009. "A current and future state of art development of hybrid energy system using wind and PV-solar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2096-2103, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sierra, J.P. & González-Marco, D. & Sospedra, J. & Gironella, X. & Mösso, C. & Sánchez-Arcilla, A., 2013. "Wave energy resource assessment in Lanzarote (Spain)," Renewable Energy, Elsevier, vol. 55(C), pages 480-489.
    2. Ozkop, Emre & Altas, Ismail H., 2017. "Control, power and electrical components in wave energy conversion systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 106-115.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
    2. Al Busaidi, Ahmed Said & Kazem, Hussein A & Al-Badi, Abdullah H & Farooq Khan, Mohammad, 2016. "A review of optimum sizing of hybrid PV–Wind renewable energy systems in oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 185-193.
    3. Fei Li & Chao Wang & Kecheng Li & Xin Wang & Dongsheng Yu & Herbert H. C. Iu, 2020. "FSK-Based Energy and Signal Composite Modulation Strategy for Switched Reluctance Drive System," Energies, MDPI, vol. 13(13), pages 1-21, July.
    4. Li, X. & Hubacek, K. & Siu, Y.L., 2012. "Wind power in China – Dream or reality?," Energy, Elsevier, vol. 37(1), pages 51-60.
    5. Breen, Benjamin & Vega, Amaya & Feo-Valero, Maria, 2015. "An empirical analysis of mode and route choice for international freight transport in Ireland," Working Papers 262587, National University of Ireland, Galway, Socio-Economic Marine Research Unit.
    6. Li, Bo & Li, Xu & Su, Qingyu, 2022. "A system and game strategy for the isolated island electric-gas deeply coupled energy network," Applied Energy, Elsevier, vol. 306(PA).
    7. Sawle, Yashwant & Gupta, S.C. & Bohre, Aashish Kumar, 2018. "Socio-techno-economic design of hybrid renewable energy system using optimization techniques," Renewable Energy, Elsevier, vol. 119(C), pages 459-472.
    8. Ikkurti, Hanumath Prasad & Saha, Suman, 2015. "A comprehensive techno-economic review of microinverters for Building Integrated Photovoltaics (BIPV)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 997-1006.
    9. Tina, Giuseppe Marco & Gagliano, Salvina, 2011. "Probabilistic modelling of hybrid solar/wind power system with solar tracking system," Renewable Energy, Elsevier, vol. 36(6), pages 1719-1727.
    10. Kyriakarakos, George & Dounis, Anastasios I. & Rozakis, Stelios & Arvanitis, Konstantinos G. & Papadakis, George, 2011. "Polygeneration microgrids: A viable solution in remote areas for supplying power, potable water and hydrogen as transportation fuel," Applied Energy, Elsevier, vol. 88(12), pages 4517-4526.
    11. Caballero, F. & Sauma, E. & Yanine, F., 2013. "Business optimal design of a grid-connected hybrid PV (photovoltaic)-wind energy system without energy storage for an Easter Island's block," Energy, Elsevier, vol. 61(C), pages 248-261.
    12. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    13. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    14. Pablo Benalcazar & Adam Suski & Jacek Kamiński, 2020. "Optimal Sizing and Scheduling of Hybrid Energy Systems: The Cases of Morona Santiago and the Galapagos Islands," Energies, MDPI, vol. 13(15), pages 1-20, August.
    15. Wu, Jie & Wang, Zhi-Xin & Xu, Lie & Wang, Guo-Qiang, 2014. "Key technologies of VSC-HVDC and its application on offshore wind farm in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 247-255.
    16. Andrea Micangeli & Riccardo Del Citto & Isaac Nzue Kiva & Simone Giovanni Santori & Valeria Gambino & Jeremiah Kiplagat & Daniele Viganò & Davide Fioriti & Davide Poli, 2017. "Energy Production Analysis and Optimization of Mini-Grid in Remote Areas: The Case Study of Habaswein, Kenya," Energies, MDPI, vol. 10(12), pages 1-23, December.
    17. Bendib, Boualem & Belmili, Hocine & Krim, Fateh, 2015. "A survey of the most used MPPT methods: Conventional and advanced algorithms applied for photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 637-648.
    18. Sonali Goel & Renu Sharma, 2019. "Optimal sizing of a biomass–biogas hybrid system for sustainable power supply to a commercial agricultural farm in northern Odisha, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2297-2319, October.
    19. Salas, V. & Suponthana, W. & Salas, R.A., 2015. "Overview of the off-grid photovoltaic diesel batteries systems with AC loads," Applied Energy, Elsevier, vol. 157(C), pages 195-216.
    20. Pali, Bahadur Singh & Vadhera, Shelly, 2021. "A novel approach for hydropower generation using photovoltaic electricity as driving energy," Applied Energy, Elsevier, vol. 302(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:44:y:2012:i:c:p:340-358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.