IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i7p1609-1613.html
   My bibliography  Save this article

Remote community electrification in Sarawak, Malaysia

Author

Listed:
  • Anyi, Martin
  • Kirke, Brian
  • Ali, Sam

Abstract

It is usually uneconomic to provide mains power to small remote communities even when high voltage lines pass by a village. Local authorities normally resort to diesel-powered generators which require expensive fuel which is difficult to bring into remote areas. Furthermore they are noisy and require frequent maintenance which is often neglected in remote areas due to limited resources and know-how. Neither wind nor sun provides reliable power in humid tropical regions where there is a lot of still and overcast weather. Towers are found to attract lightning strikes which can destroy electronic controls, fungus grows on solar panels, and the multiple electrical connections on photovoltaic arrays corrode away in hot, humid climates. Micro hydro is an attractive option in mountainous areas, and a 30kW high head and a 3kW low head plant have been built, using village labour and surplus and discarded materials. Both are operating satisfactorily. However conventional micro hydro is not possible in flat country where there is little elevation, and work is now in progress to evaluate suitable hydrokinetic turbines on rivers in the humid tropics. Numerous companies around the world are now developing hydrokinetic turbines to harvest tidal and river flows, but a major problem with most designs is clogging by floating debris, especially in tropical rivers.

Suggested Citation

  • Anyi, Martin & Kirke, Brian & Ali, Sam, 2010. "Remote community electrification in Sarawak, Malaysia," Renewable Energy, Elsevier, vol. 35(7), pages 1609-1613.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:7:p:1609-1613
    DOI: 10.1016/j.renene.2010.01.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110000091
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.01.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    2. Kadier, Abudukeremu & Kalil, Mohd Sahaid & Pudukudy, Manoj & Hasan, Hassimi Abu & Mohamed, Azah & Hamid, Aidil Abdul, 2018. "Pico hydropower (PHP) development in Malaysia: Potential, present status, barriers and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2796-2805.
    3. Chong, W.T. & Pan, K.C. & Poh, S.C. & Fazlizan, A. & Oon, C.S. & Badarudin, A. & Nik-Ghazali, N., 2013. "Performance investigation of a power augmented vertical axis wind turbine for urban high-rise application," Renewable Energy, Elsevier, vol. 51(C), pages 388-397.
    4. Willis Awandu & Robin Ruff & Jens-Uwe Wiesemann & Boris Lehmann, 2022. "Status of Micro-Hydrokinetic River Technology Turbines Application for Rural Electrification in Africa," Energies, MDPI, vol. 15(23), pages 1-13, November.
    5. Milne, I.A. & Day, A.H. & Sharma, R.N. & Flay, R.G.J., 2015. "Blade loading on tidal turbines for uniform unsteady flow," Renewable Energy, Elsevier, vol. 77(C), pages 338-350.
    6. Kumar, Anuj & Saini, R.P., 2016. "Performance parameters of Savonius type hydrokinetic turbine – A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 289-310.
    7. Yah, Nor F. & Oumer, Ahmed N. & Idris, Mat S., 2017. "Small scale hydro-power as a source of renewable energy in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 228-239.
    8. Fadaeenejad, M. & Radzi, M.A.M. & AbKadir, M.Z.A. & Hizam, H., 2014. "Assessment of hybrid renewable power sources for rural electrification in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 299-305.
    9. Williamson, S.J. & Stark, B.H. & Booker, J.D., 2014. "Low head pico hydro turbine selection using a multi-criteria analysis," Renewable Energy, Elsevier, vol. 61(C), pages 43-50.
    10. Nasrin Aghamohammadi & Stacy Simai Reginald & Ahmad Shamiri & Ali Akbar Zinatizadeh & Li Ping Wong & Nik Meriam Binti Nik Sulaiman, 2016. "An Investigation of Sustainable Power Generation from Oil Palm Biomass: A Case Study in Sarawak," Sustainability, MDPI, vol. 8(5), pages 1-19, April.
    11. Lata-García, Juan & Jurado, Francisco & Fernández-Ramírez, Luis M. & Sánchez-Sainz, Higinio, 2018. "Optimal hydrokinetic turbine location and techno-economic analysis of a hybrid system based on photovoltaic/hydrokinetic/hydrogen/battery," Energy, Elsevier, vol. 159(C), pages 611-620.
    12. Hafez, Omar & Bhattacharya, Kankar, 2012. "Optimal planning and design of a renewable energy based supply system for microgrids," Renewable Energy, Elsevier, vol. 45(C), pages 7-15.
    13. Borhanazad, H. & Mekhilef, S. & Saidur, R. & Boroumandjazi, G., 2013. "Potential application of renewable energy for rural electrification in Malaysia," Renewable Energy, Elsevier, vol. 59(C), pages 210-219.
    14. K. Y. Lau & C. W. Tan, 2021. "Performance analysis of photovoltaic, hydrokinetic, and hybrid diesel systems for rural electrification in Malaysian Borneo," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6279-6300, April.
    15. Milne, I.A. & Day, A.H. & Sharma, R.N. & Flay, R.G.J., 2016. "The characterisation of the hydrodynamic loads on tidal turbines due to turbulence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 851-864.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:7:p:1609-1613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.