IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i3p869-875.html
   My bibliography  Save this article

A comparison of the accuracy of building energy analysis in Bahrain using data from different weather periods

Author

Listed:
  • Radhi, Hassan

Abstract

Weather data are important in building design and energy analysis. In Bahrain, the weather data currently used are based on far past climatic information. Climate variability during the last few decades has raised concern over the ability of these data to provide accurate results when analysing the energy performance of buildings. This study discusses issues related to climate variability and evaluates its impact on the performance of weather data used in building simulation. An evaluation was performed using two methods: firstly, a comparison of measured climatic elements and secondly, a comparison of the thermal performance of two statistically based weather data files. With respect to their impact on typical Bahraini building thermal systems, the comparison was carried out between simulation results and the actual energy consumption of two case studies. This paper shows a 14.5% difference between simulation results based on far past data and present electricity consumption and concludes that the prediction of present and future performance based on recent updated data gives better results.

Suggested Citation

  • Radhi, Hassan, 2009. "A comparison of the accuracy of building energy analysis in Bahrain using data from different weather periods," Renewable Energy, Elsevier, vol. 34(3), pages 869-875.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:3:p:869-875
    DOI: 10.1016/j.renene.2008.06.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148108002541
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.06.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Ying & Yan, Da & Hong, Tianzhen & Xiao, Chan & Luo, Xuan & Zhang, Qi, 2017. "Comparison of typical year and multiyear building simulations using a 55-year actual weather data set from China," Applied Energy, Elsevier, vol. 195(C), pages 890-904.
    2. Vincenzo Costanzo & Gianpiero Evola & Marco Infantone & Luigi Marletta, 2020. "Updated Typical Weather Years for the Energy Simulation of Buildings in Mediterranean Climate. A Case Study for Sicily," Energies, MDPI, vol. 13(16), pages 1-24, August.
    3. Yau, Y.H. & Pean, H.L., 2011. "The climate change impact on air conditioner system and reliability in Malaysia—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4939-4949.
    4. Serena Summa & Giada Remia & Ambra Sebastianelli & Gianluca Coccia & Costanzo Di Perna, 2022. "Impact on Thermal Energy Needs Caused by the Use of Different Solar Irradiance Decomposition and Transposition Models: Application of EN ISO 52016-1 and EN ISO 52010-1 Standards for Five European Citi," Energies, MDPI, vol. 15(23), pages 1-18, November.
    5. Evola, Gianpiero & Costanzo, Vincenzo & Infantone, Marco & Marletta, Luigi, 2021. "Typical-year and multi-year building energy simulation approaches: A critical comparison," Energy, Elsevier, vol. 219(C).
    6. Hong, Tianzhen & Chang, Wen-Kuei & Lin, Hung-Wen, 2013. "A fresh look at weather impact on peak electricity demand and energy use of buildings using 30-year actual weather data," Applied Energy, Elsevier, vol. 111(C), pages 333-350.
    7. Eva Lucas Segarra & Germán Ramos Ruiz & Vicente Gutiérrez González & Antonis Peppas & Carlos Fernández Bandera, 2020. "Impact Assessment for Building Energy Models Using Observed vs. Third-Party Weather Data Sets," Sustainability, MDPI, vol. 12(17), pages 1-27, August.
    8. Papakostas, K. & Mavromatis, T. & Kyriakis, N., 2010. "Impact of the ambient temperature rise on the energy consumption for heating and cooling in residential buildings of Greece," Renewable Energy, Elsevier, vol. 35(7), pages 1376-1379.
    9. Radhi, Hassan & Eltrapolsi, Ali & Sharples, Stephen, 2009. "Will energy regulations in the Gulf States make buildings more comfortable - A scoping study of residential buildings," Applied Energy, Elsevier, vol. 86(12), pages 2531-2539, December.
    10. Tejero-González, Ana & Andrés-Chicote, Manuel & García-Ibáñez, Paola & Velasco-Gómez, Eloy & Rey-Martínez, Francisco Javier, 2016. "Assessing the applicability of passive cooling and heating techniques through climate factors: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 727-742.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:3:p:869-875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.