IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i12p2878-2882.html
   My bibliography  Save this article

Hydrostatic pressure plants for desalination via reverse osmosis

Author

Listed:
  • Charcosset, C.
  • Falconet, C.
  • Combe, M.

Abstract

Renewable energies (solar and wind energies) associated to reverse osmosis (RO) are gaining renewed interest for brackish and seawater desalination. Another potential source of energy is the hydrostatic pressure at a sufficient operative depth or height to perform the RO process. This article provides a comparison of the energy requirement of various hydrostatic pressure-RO plants. For submarine and underground plants, the required energy is equal to 2.98 and 3.54kWh, respectively, for 1m3 of produced fresh water. In case of hydrostatic pressure generated by a column of water due to a head difference between the sea level and an adjacent mountain, the energy required is equal to 1.4kWh. These energy requirements compare well with the usual energy requirement for desalination, between 3 and 10kWh for 1m3 of produced fresh water. However, the main drawback associated with hydrostatic pressure plants relates to their construction and their maintenance, which are expected to be more complicated and costly than for a ground plant.

Suggested Citation

  • Charcosset, C. & Falconet, C. & Combe, M., 2009. "Hydrostatic pressure plants for desalination via reverse osmosis," Renewable Energy, Elsevier, vol. 34(12), pages 2878-2882.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:12:p:2878-2882
    DOI: 10.1016/j.renene.2009.02.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109000986
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.02.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gocht, W. & Sommerfeld, A. & Rautenbach, R. & Melin, Th. & Eilers, L. & Neskakis, A. & Herold, D. & Horstmann, V. & Kabariti, M. & Muhaidat, A., 1998. "Decentralized desalination of brackish water by a directly coupled reverse-osmosis-photovoltaic-system - a pilot plant study in Jordan," Renewable Energy, Elsevier, vol. 14(1), pages 287-292.
    2. Vujčić, R & Krneta, M, 2000. "Wind-driven seawater desalination plant for agricultural development on the islands of the County of Split and Dalmatia," Renewable Energy, Elsevier, vol. 19(1), pages 173-183.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fasano, Matteo & Morciano, Matteo & Bergamasco, Luca & Chiavazzo, Eliodoro & Zampato, Massimo & Carminati, Stefano & Asinari, Pietro, 2021. "Deep-sea reverse osmosis desalination for energy efficient low salinity enhanced oil recovery," Applied Energy, Elsevier, vol. 304(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaber, Jamal O. & Awad, Wael & Rahmeh, Taieseer Abu & Alawin, Aiman A. & Al-Lubani, Suleiman & Dalu, Sameh Abu & Dalabih, Ali & Al-Bashir, Adnan, 2017. "Renewable energy education in faculties of engineering in Jordan: Relationship between demographics and level of knowledge of senior students’," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 452-459.
    2. Ghaithan, Ahmed M. & Al-Hanbali, Ahmad & Mohammed, Awsan & Attia, Ahmed M. & Saleh, Haitham & Alsawafy, Omar, 2021. "Optimization of a solar-wind- grid powered desalination system in Saudi Arabia," Renewable Energy, Elsevier, vol. 178(C), pages 295-306.
    3. Alghoul, M.A. & Poovanaesvaran, P. & Sopian, K. & Sulaiman, M.Y., 2009. "Review of brackish water reverse osmosis (BWRO) system designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2661-2667, December.
    4. Khan, Meer A.M. & Rehman, S. & Al-Sulaiman, Fahad A., 2018. "A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 456-477.
    5. Ali, Aamer & Tufa, Ramato Ashu & Macedonio, Francesca & Curcio, Efrem & Drioli, Enrico, 2018. "Membrane technology in renewable-energy-driven desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1-21.
    6. Alghoul, M.A. & Poovanaesvaran, P. & Mohammed, M.H. & Fadhil, A.M. & Muftah, A.F. & Alkilani, M.M. & Sopian, K., 2016. "Design and experimental performance of brackish water reverse osmosis desalination unit powered by 2 kW photovoltaic system," Renewable Energy, Elsevier, vol. 93(C), pages 101-114.
    7. Gude, Veera Gnaneswar & Nirmalakhandan, Nagamany & Deng, Shuguang, 2010. "Renewable and sustainable approaches for desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2641-2654, December.
    8. Sharon, H. & Reddy, K.S., 2015. "A review of solar energy driven desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1080-1118.
    9. Li, Sheying & Voigt, Achim & Schäfer, Andrea I. & Richards, Bryce S., 2020. "Renewable energy powered membrane technology: Energy buffering control system for improved resilience to periodic fluctuations of solar irradiance," Renewable Energy, Elsevier, vol. 149(C), pages 877-889.
    10. Park, Gavin L. & Schäfer, Andrea I. & Richards, Bryce S., 2013. "Renewable energy-powered membrane technology: Supercapacitors for buffering resource fluctuations in a wind-powered membrane system for brackish water desalination," Renewable Energy, Elsevier, vol. 50(C), pages 126-135.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:12:p:2878-2882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.