IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v33y2008i7p1461-1468.html
   My bibliography  Save this article

Solar collector systems to provide hot air in rural applications

Author

Listed:
  • Bilgen, E.
  • Bakeka, B.J.D.

Abstract

A simple solar system is designed and studied, its thermal performance and economics are evaluated. A mathematical model and a code are developed based on monthly average meteorological data. The collector field is built using indigenous and locally available materials. Two kinds of solar collector field are considered: (i) collector field for which the ground is used as absorber and with glazing; (ii) collector field for which roofing sheet is used as absorber without glazing (bare absorber plate collector). In a case study, the system is used to provide thermal energy for drying tobacco in an existing propane burning heating plant at Bokito, Cameroon. The results showed that in the first case, the thermal efficiency is about 38%, the useful annual solar energy collected is 2.592GJ/m2/year and the cost of thermal energy is 2.03$/GJ, and in the second case, the corresponding values are for collector with galvanized iron roofing sheet absorber, 22%, 1.443GJ/m2/year, 1.46$/GJ, and for collector with aluminum roofing sheet absorber, 24.5%, 1.650GJ/m2/year, 1.28$/GJ. The estimated solar energy cost compares favorably with the thermal energy cost of 36.5 $/GJ from the existing propane fired system.

Suggested Citation

  • Bilgen, E. & Bakeka, B.J.D., 2008. "Solar collector systems to provide hot air in rural applications," Renewable Energy, Elsevier, vol. 33(7), pages 1461-1468.
  • Handle: RePEc:eee:renene:v:33:y:2008:i:7:p:1461-1468
    DOI: 10.1016/j.renene.2007.09.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014810700290X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2007.09.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shanmugam, V. & Natarajan, E., 2006. "Experimental investigation of forced convection and desiccant integrated solar dryer," Renewable Energy, Elsevier, vol. 31(8), pages 1239-1251.
    2. Koyuncu, Turhan, 2006. "An Investigation on the performance Improvement of greenhouse-type agricultural dryers," Renewable Energy, Elsevier, vol. 31(7), pages 1055-1071.
    3. Forson, F.K. & Nazha, M.A.A. & Akuffo, F.O. & Rajakaruna, H., 2007. "Design of mixed-mode natural convection solar crop dryers: Application of principles and rules of thumb," Renewable Energy, Elsevier, vol. 32(14), pages 2306-2319.
    4. Koyuncu, Turhan, 2006. "Performance of various design of solar air heaters for crop drying applications," Renewable Energy, Elsevier, vol. 31(7), pages 1073-1088.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dagdougui, Hanane & Ouammi, Ahmed & Robba, Michela & Sacile, Roberto, 2011. "Thermal analysis and performance optimization of a solar water heater flat plate collector: Application to Tétouan (Morocco)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 630-638, January.
    2. Saxena, Abhishek & Varun, & El-Sebaii, A.A., 2015. "A thermodynamic review of solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 863-890.
    3. Nemś, Magdalena & Kasperski, Jacek, 2016. "Experimental investigation of concentrated solar air-heater with internal multiple-fin array," Renewable Energy, Elsevier, vol. 97(C), pages 722-730.
    4. Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.
    5. Gunjo, Dawit Gudeta & Mahanta, Pinakeswar & Robi, P.S., 2017. "CFD and experimental investigation of flat plate solar water heating system under steady state condition," Renewable Energy, Elsevier, vol. 106(C), pages 24-36.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Murthy, M.V. Ramana, 2009. "A review of new technologies, models and experimental investigations of solar driers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 835-844, May.
    2. VijayaVenkataRaman, S. & Iniyan, S. & Goic, Ranko, 2012. "A review of solar drying technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2652-2670.
    3. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    4. Patil, Rajendra & Gawande, Rupesh, 2016. "A review on solar tunnel greenhouse drying system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 196-214.
    5. Fudholi, Ahmad & Sopian, Kamaruzzaman & Bakhtyar, B. & Gabbasa, Mohamed & Othman, Mohd Yusof & Ruslan, Mohd Hafidz, 2015. "Review of solar drying systems with air based solar collectors in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1191-1204.
    6. Fudholi, A. & Sopian, K. & Ruslan, M.H. & Alghoul, M.A. & Sulaiman, M.Y., 2010. "Review of solar dryers for agricultural and marine products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 1-30, January.
    7. Fudholi, Ahmad & Sopian, Kamaruzzaman & Gabbasa, Mohamed & Bakhtyar, B. & Yahya, M. & Ruslan, Mohd Hafidz & Mat, Sohif, 2015. "Techno-economic of solar drying systems with water based solar collectors in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 809-820.
    8. Thirugnanasambandam, Mirunalini & Iniyan, S. & Goic, Ranko, 2010. "A review of solar thermal technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 312-322, January.
    9. Husham Abdulmalek, Shaymaa & Khalaji Assadi, Morteza & Al-Kayiem, Hussain H. & Gitan, Ali Ahmed, 2018. "A comparative analysis on the uniformity enhancement methods of solar thermal drying," Energy, Elsevier, vol. 148(C), pages 1103-1115.
    10. Abubakar, S. & Umaru, S. & Kaisan, M.U. & Umar, U.A. & Ashok, B. & Nanthagopal, K., 2018. "Development and performance comparison of mixed-mode solar crop dryers with and without thermal storage," Renewable Energy, Elsevier, vol. 128(PA), pages 285-298.
    11. Sharma, Atul & Chen, C.R. & Vu Lan, Nguyen, 2009. "Solar-energy drying systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1185-1210, August.
    12. Tiwari, Sumit & Tiwari, G.N. & Al-Helal, I.M., 2016. "Development and recent trends in greenhouse dryer: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1048-1064.
    13. Alessandra Cantini & Leonardo Leoni & Filippo De Carlo & Marcello Salvio & Chiara Martini & Fabrizio Martini, 2021. "Technological Energy Efficiency Improvements in Cement Industries," Sustainability, MDPI, vol. 13(7), pages 1-28, March.
    14. Sivakumar, S. & Velmurugan, C. & Dhas, D.S. Ebenezer Jacob & Solomon, A. Brusly & Dev Wins, K. Leo, 2020. "Effect of nano cupric oxide coating on the forced convection performance of a mixed-mode flat plate solar dryer," Renewable Energy, Elsevier, vol. 155(C), pages 1165-1172.
    15. Afshari, Faraz & Khanlari, Ataollah & Tuncer, Azim Doğuş & Sözen, Adnan & Şahinkesen, İstemihan & Di Nicola, Giovanni, 2021. "Dehumidification of sewage sludge using quonset solar tunnel dryer: An experimental and numerical approach," Renewable Energy, Elsevier, vol. 171(C), pages 784-798.
    16. Tiwari, Sumit & Agrawal, Sanjay & Tiwari, G.N., 2018. "PVT air collector integrated greenhouse dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 142-159.
    17. Yahya, M. & Fudholi, Ahmad & Sopian, Kamaruzzaman, 2017. "Energy and exergy analyses of solar-assisted fluidized bed drying integrated with biomass furnace," Renewable Energy, Elsevier, vol. 105(C), pages 22-29.
    18. Ramzy, Ahmed K. & Kadoli, Ravikiran & T.P., Ashok Babu, 2013. "Experimental and theoretical investigations on the cyclic operation of TSA cycle for air dehumidification using packed beds of silica gel particles," Energy, Elsevier, vol. 56(C), pages 8-24.
    19. Zain Ul Abdin & Ahmed Rachid, 2021. "A Survey on Applications of Hybrid PV/T Panels," Energies, MDPI, vol. 14(4), pages 1-23, February.
    20. Çiftçi, Erdem & Khanlari, Ataollah & Sözen, Adnan & Aytaç, İpek & Tuncer, Azim Doğuş, 2021. "Energy and exergy analysis of a photovoltaic thermal (PVT) system used in solar dryer: A numerical and experimental investigation," Renewable Energy, Elsevier, vol. 180(C), pages 410-423.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:33:y:2008:i:7:p:1461-1468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.