IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v33y2008i10p2236-2245.html
   My bibliography  Save this article

The effect of diffuser configuration on thermal stratification in a rectangular storage tank

Author

Listed:
  • Chung, Jae Dong
  • Cho, Sung Hwan
  • Tae, Choon Seob
  • Yoo, Hoseon

Abstract

This study is to systematically analyze the effect of various kinds of design factors on the stratification performance of a rectangular storage tank. Special interest is focused on the diffuser configuration, which crucially impacts the performance of a storage tank. Herein, a new diffuser shape is proposed, which exemplifies improved performance. Three-dimensional unsteady numerical experiments are conducted for four design parameters of a stratified thermal storage tank: Three design parameters with three levels (i.e., the Reynolds number=400, 800, and 1200; the Froude number=0.5, 1.0, and 2.0; and the area ratio of the diffuser to tank cross-section=0.0327, 0.0582, and 0.131) and one design parameter having two levels (i.e., diffuser type=radial plate type and radial adjusted plate type). Orthogonal array L18(2×37) is adopted for the analysis of variance. The result gives quantitative estimation of the various design parameters affecting the performance and helps to determine the main factors for the optimum design of a stratified thermal storage tank. In the range of parameters considered, the Reynolds number is found to be the most dominant parameter. Moreover, the diffuser shape plays a significant role on the performance of a stratified thermal storage tank.

Suggested Citation

  • Chung, Jae Dong & Cho, Sung Hwan & Tae, Choon Seob & Yoo, Hoseon, 2008. "The effect of diffuser configuration on thermal stratification in a rectangular storage tank," Renewable Energy, Elsevier, vol. 33(10), pages 2236-2245.
  • Handle: RePEc:eee:renene:v:33:y:2008:i:10:p:2236-2245
    DOI: 10.1016/j.renene.2007.12.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148107004107
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2007.12.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Li & Fengzhong Sun & Qiannan Zhang & Xuehong Chen & Wei Yuan, 2020. "Numerical Simulation Study on Structure Optimization and Performance Improvement of Hot Water Storage Tank in CHP System," Energies, MDPI, vol. 13(18), pages 1-14, September.
    2. María Gasque & Federico Ibáñez & Pablo González-Altozano, 2021. "Minimum Number of Experimental Data for the Thermal Characterization of a Hot Water Storage Tank," Energies, MDPI, vol. 14(16), pages 1-16, August.
    3. Ruth M. Saint & Céline Garnier & Francesco Pomponi & John Currie, 2018. "Thermal Performance through Heat Retention in Integrated Collector-Storage Solar Water Heaters: A Review," Energies, MDPI, vol. 11(6), pages 1-26, June.
    4. Streckiene, Giedre & Martinaitis, Vytautas & Andersen, Anders N. & Katz, Jonas, 2009. "Feasibility of CHP-plants with thermal stores in the German spot market," Applied Energy, Elsevier, vol. 86(11), pages 2308-2316, November.
    5. Pinel, Patrice & Cruickshank, Cynthia A. & Beausoleil-Morrison, Ian & Wills, Adam, 2011. "A review of available methods for seasonal storage of solar thermal energy in residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3341-3359, September.
    6. Garnier, Celine & Muneer, Tariq & Currie, John, 2018. "Numerical and empirical evaluation of a novel building integrated collector storage solar water heater," Renewable Energy, Elsevier, vol. 126(C), pages 281-295.
    7. Li, Qiong & Huang, Xiaoqiao & Tai, Yonghang & Gao, Wenfeng & Wenxian, L. & Liu, Wuming, 2021. "Thermal stratification in a solar hot water storage tank with mantle heat exchanger," Renewable Energy, Elsevier, vol. 173(C), pages 1-11.
    8. Hafez, A.M. & Kassem, M.A. & Huzayyin, O.A., 2018. "Smart adaptive model for dynamic simulation of horizontal thermally stratified storage tanks," Energy, Elsevier, vol. 142(C), pages 782-792.
    9. Kumar, G. Senthil & Nagarajan, D. & Chidambaram, L.A. & Kumaresan, V. & Ding, Y. & Velraj, R., 2016. "Role of PCM addition on stratification behaviour in a thermal storage tank – An experimental study," Energy, Elsevier, vol. 115(P1), pages 1168-1178.
    10. Wanruo Lou & Lingai Luo & Yuchao Hua & Yilin Fan & Zhenyu Du, 2021. "A Review on the Performance Indicators and Influencing Factors for the Thermocline Thermal Energy Storage Systems," Energies, MDPI, vol. 14(24), pages 1-19, December.
    11. Baeten, Brecht & Confrey, Thomas & Pecceu, Sébastien & Rogiers, Frederik & Helsen, Lieve, 2016. "A validated model for mixing and buoyancy in stratified hot water storage tanks for use in building energy simulations," Applied Energy, Elsevier, vol. 172(C), pages 217-229.
    12. Dahash, Abdulrahman & Ochs, Fabian & Janetti, Michele Bianchi & Streicher, Wolfgang, 2019. "Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems," Applied Energy, Elsevier, vol. 239(C), pages 296-315.
    13. Abdelsalam, M.Y. & Teamah, H.M. & Lightstone, M.F. & Cotton, J.S., 2020. "Hybrid thermal energy storage with phase change materials for solar domestic hot water applications: Direct versus indirect heat exchange systems," Renewable Energy, Elsevier, vol. 147(P1), pages 77-88.
    14. Kurşun, Burak & Ökten, Korhan, 2018. "Effect of rectangular hot water tank position and aspect ratio on thermal stratification enhancement," Renewable Energy, Elsevier, vol. 116(PA), pages 639-646.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:33:y:2008:i:10:p:2236-2245. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.