IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v32y2007i13p2247-2267.html
   My bibliography  Save this article

The wake structure in a 2D grid installation of the horizontal axis micro wind turbines

Author

Listed:
  • Hossain, M.Z.
  • Hirahara, H.
  • Nonomura, Y.
  • Kawahashi, M.

Abstract

In order to develop applications for micro-wind turbines, an experimental analysis of the flow field around integrated micro-wind turbines was performed. The wake flows of a single turbine and 5×5 array unit were measured by using hot-wire and ultrasonic anemometers and particle image velocimetry (PIV). The present array of turbines follows a fundamental lattice layout; however, it has the flexibility to optimize its layout according to the environmental conditions. hot-wire and ultrasonic anemometers and PIV measurements were used for stand-alone turbines and their integrated systems. Comparisons between the mean velocity field and turbulent intensity were described for stand-alone full-scale and 1/10-scale wind turbine models. Thereafter, a typical array of the 1/10-scale model was assumed and its wake flow was investigated in a wind tunnel. The velocity profile and turbulence behind the array were measured and studied at different streamwise locations. The scale effect and model similarities were discussed. The experimental results show that a zone exists with constant and linear wake deficit ratios in the downstream regions.

Suggested Citation

  • Hossain, M.Z. & Hirahara, H. & Nonomura, Y. & Kawahashi, M., 2007. "The wake structure in a 2D grid installation of the horizontal axis micro wind turbines," Renewable Energy, Elsevier, vol. 32(13), pages 2247-2267.
  • Handle: RePEc:eee:renene:v:32:y:2007:i:13:p:2247-2267
    DOI: 10.1016/j.renene.2006.11.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148106003399
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2006.11.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hopkins, William, 1999. "Small to medium size wind turbines: Local use of a local resource," Renewable Energy, Elsevier, vol. 16(1), pages 944-947.
    2. Clausen, P.D. & Wood, D.H., 1999. "Research and development issues for small wind turbines," Renewable Energy, Elsevier, vol. 16(1), pages 922-927.
    3. Ebert, P.R. & Wood, D.H., 1997. "The near wake of a model horizontal-axis wind turbine—I. Experimental arrangements and initial results," Renewable Energy, Elsevier, vol. 12(3), pages 225-243.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafael V. Rodrigues & Corinne Lengsfeld, 2019. "Development of a Computational System to Improve Wind Farm Layout, Part II: Wind Turbine Wakes Interaction," Energies, MDPI, vol. 12(7), pages 1-27, April.
    2. Rafael V. Rodrigues & Corinne Lengsfeld, 2019. "Development of a Computational System to Improve Wind Farm Layout, Part I: Model Validation and Near Wake Analysis," Energies, MDPI, vol. 12(5), pages 1-24, March.
    3. McTavish, S. & Feszty, D. & Nitzsche, F., 2013. "A study of the performance benefits of closely-spaced lateral wind farm configurations," Renewable Energy, Elsevier, vol. 59(C), pages 128-135.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hirahara, Hiroyuki & Hossain, M. Zakir & Kawahashi, Masaaki & Nonomura, Yoshitami, 2005. "Testing basic performance of a very small wind turbine designed for multi-purposes," Renewable Energy, Elsevier, vol. 30(8), pages 1279-1297.
    2. Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
    3. N. Aravindhan & M. P. Natarajan & S. Ponnuvel & P.K. Devan, 2023. "Recent developments and issues of small-scale wind turbines in urban residential buildings- A review," Energy & Environment, , vol. 34(4), pages 1142-1169, June.
    4. Ikeda, Teruaki & Tanaka, Hiroto & Yoshimura, Ryosuke & Noda, Ryusuke & Fujii, Takeo & Liu, Hao, 2018. "A robust biomimetic blade design for micro wind turbines," Renewable Energy, Elsevier, vol. 125(C), pages 155-165.
    5. Kaldellis, John K. & Zafirakis, D., 2011. "The wind energy (r)evolution: A short review of a long history," Renewable Energy, Elsevier, vol. 36(7), pages 1887-1901.
    6. Zaki, Abanoub & Abdelrahman, M.A. & Ayad, Samir S. & Abdellatif, O.E., 2022. "Effects of leading edge slat on the aerodynamic performance of low Reynolds number horizontal axis wind turbine," Energy, Elsevier, vol. 239(PD).
    7. Luo, Kun & Zhang, Sanxia & Gao, Zhiying & Wang, Jianwen & Zhang, Liru & Yuan, Renyu & Fan, Jianren & Cen, Kefa, 2015. "Large-eddy simulation and wind-tunnel measurement of aerodynamics and aeroacoustics of a horizontal-axis wind turbine," Renewable Energy, Elsevier, vol. 77(C), pages 351-362.
    8. Ebert, P.R. & Wood, D.H., 2002. "The near wake of a model horizontal-axis wind turbine at runaway," Renewable Energy, Elsevier, vol. 25(1), pages 41-54.
    9. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Hiromori, Yuto, 2018. "Investigation of wake characteristic of a 30 kW rated power Horizontal Axis Wind Turbine with wake model and field measurement," Applied Energy, Elsevier, vol. 225(C), pages 1190-1204.
    10. Singh, Ronit K. & Ahmed, M. Rafiuddin, 2013. "Blade design and performance testing of a small wind turbine rotor for low wind speed applications," Renewable Energy, Elsevier, vol. 50(C), pages 812-819.
    11. Singh, Ronit K. & Ahmed, M. Rafiuddin & Zullah, Mohammad Asid & Lee, Young-Ho, 2012. "Design of a low Reynolds number airfoil for small horizontal axis wind turbines," Renewable Energy, Elsevier, vol. 42(C), pages 66-76.
    12. Junseon Park & Seungjin Lee & Joong Yull Park, 2020. "Effects of the Angled Blades of Extremely Small Wind Turbines on Energy Harvesting Performance," Mathematics, MDPI, vol. 8(8), pages 1-15, August.
    13. Mishnaevsky, Leon & Freere, Peter & Sinha, Rakesh & Acharya, Parash & Shrestha, Rakesh & Manandhar, Pushkar, 2011. "Small wind turbines with timber blades for developing countries: Materials choice, development, installation and experiences," Renewable Energy, Elsevier, vol. 36(8), pages 2128-2138.
    14. Xiaodong Wang & Yunong Liu & Luyao Wang & Lin Ding & Hui Hu, 2019. "Numerical Study of Nacelle Wind Speed Characteristics of a Horizontal Axis Wind Turbine under Time-Varying Flow," Energies, MDPI, vol. 12(20), pages 1-19, October.
    15. Tan Woan Wen & C. Palanichamy & Gobbi Ramasamy, 2019. "Performance Optimization of Constant Speed - Small Horizontal Axis Wind Turbine (CS-SHAWT) for Wind Energy Development in Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 280-290.
    16. Simona Culotta & Vincenzo Franzitta & Daniele Milone & Gino Moncada Lo Giudice, 2015. "Small Wind Technology Diffusion in Suburban Areas of Sicily," Sustainability, MDPI, vol. 7(9), pages 1-16, September.
    17. Lai, Chi-ming & Lin, Ta-hui, 2006. "Technical assessment of the use of a small-scale wind power system to meet the demand for electricity in a land aquafarm in Taiwan," Renewable Energy, Elsevier, vol. 31(6), pages 877-892.
    18. Ebert, P.R & Wood, D.H, 2001. "The near wake of a model horizontal-axis wind turbine," Renewable Energy, Elsevier, vol. 22(4), pages 461-472.
    19. Ebert, P.R. & Wood, D.H., 1999. "The near wake of a model horizontal-axis wind turbine—II. General features of the three-dimensional flowfield," Renewable Energy, Elsevier, vol. 18(4), pages 513-534.
    20. Mayer, C & Bechly, M.E & Hampsey, M & Wood, D.H, 2001. "The starting behaviour of a small horizontal-axis wind turbine," Renewable Energy, Elsevier, vol. 22(1), pages 411-417.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:32:y:2007:i:13:p:2247-2267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.