IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v18y1999i4p513-534.html
   My bibliography  Save this article

The near wake of a model horizontal-axis wind turbine—II. General features of the three-dimensional flowfield

Author

Listed:
  • Ebert, P.R.
  • Wood, D.H.

Abstract

The three-dimensional near-wake of a model horizontal-axis wind turbine has been measured for three operating conditions: stalled flow over the blades, close to optimum performance, and approaching runaway. The measurements of the mean velocity and turbulence at six axial locations document the formation and development of the near-wake. For the two highest tip speed ratios, the tip vortices are clearly identifiable from the contours of axial velocity and vorticity, and turbulent kinetic energy. At the lowest tip speed ratio, the turbulence level is also high within the blade wakes and these wakes are larger, because of separation in the flow over the blades. The wake structure is simplest for the condition closest to the optimum where the bound vorticity is almost constant with radius. As the tip speed ratio increases, the pitch of the tip vortices decreases and the angular momentum within them increases. This angular momentum reduces the power available from the turbine. The implication is that the structure of the tip vortices must be included in computational models intended to cover the entire operating range of a turbine.

Suggested Citation

  • Ebert, P.R. & Wood, D.H., 1999. "The near wake of a model horizontal-axis wind turbine—II. General features of the three-dimensional flowfield," Renewable Energy, Elsevier, vol. 18(4), pages 513-534.
  • Handle: RePEc:eee:renene:v:18:y:1999:i:4:p:513-534
    DOI: 10.1016/S0960-1481(98)00797-6
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148198007976
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(98)00797-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ebert, P.R. & Wood, D.H., 1997. "The near wake of a model horizontal-axis wind turbine—I. Experimental arrangements and initial results," Renewable Energy, Elsevier, vol. 12(3), pages 225-243.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Hiromori, Yuto, 2018. "Investigation of wake characteristic of a 30 kW rated power Horizontal Axis Wind Turbine with wake model and field measurement," Applied Energy, Elsevier, vol. 225(C), pages 1190-1204.
    2. Eriksen, Pål Egil & Krogstad, Per-Åge, 2017. "Development of coherent motion in the wake of a model wind turbine," Renewable Energy, Elsevier, vol. 108(C), pages 449-460.
    3. Ebert, P.R & Wood, D.H, 2001. "The near wake of a model horizontal-axis wind turbine," Renewable Energy, Elsevier, vol. 22(4), pages 461-472.
    4. Ebert, P.R. & Wood, D.H., 2002. "The near wake of a model horizontal-axis wind turbine at runaway," Renewable Energy, Elsevier, vol. 25(1), pages 41-54.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Kun & Zhang, Sanxia & Gao, Zhiying & Wang, Jianwen & Zhang, Liru & Yuan, Renyu & Fan, Jianren & Cen, Kefa, 2015. "Large-eddy simulation and wind-tunnel measurement of aerodynamics and aeroacoustics of a horizontal-axis wind turbine," Renewable Energy, Elsevier, vol. 77(C), pages 351-362.
    2. Xiaodong Wang & Yunong Liu & Luyao Wang & Lin Ding & Hui Hu, 2019. "Numerical Study of Nacelle Wind Speed Characteristics of a Horizontal Axis Wind Turbine under Time-Varying Flow," Energies, MDPI, vol. 12(20), pages 1-19, October.
    3. Ebert, P.R. & Wood, D.H., 2002. "The near wake of a model horizontal-axis wind turbine at runaway," Renewable Energy, Elsevier, vol. 25(1), pages 41-54.
    4. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Hiromori, Yuto, 2018. "Investigation of wake characteristic of a 30 kW rated power Horizontal Axis Wind Turbine with wake model and field measurement," Applied Energy, Elsevier, vol. 225(C), pages 1190-1204.
    5. Hossain, M.Z. & Hirahara, H. & Nonomura, Y. & Kawahashi, M., 2007. "The wake structure in a 2D grid installation of the horizontal axis micro wind turbines," Renewable Energy, Elsevier, vol. 32(13), pages 2247-2267.
    6. Hirahara, Hiroyuki & Hossain, M. Zakir & Kawahashi, Masaaki & Nonomura, Yoshitami, 2005. "Testing basic performance of a very small wind turbine designed for multi-purposes," Renewable Energy, Elsevier, vol. 30(8), pages 1279-1297.
    7. Ebert, P.R & Wood, D.H, 2001. "The near wake of a model horizontal-axis wind turbine," Renewable Energy, Elsevier, vol. 22(4), pages 461-472.
    8. Chehouri, Adam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2015. "Review of performance optimization techniques applied to wind turbines," Applied Energy, Elsevier, vol. 142(C), pages 361-388.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:18:y:1999:i:4:p:513-534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.