IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v29y2004i13p2053-2064.html
   My bibliography  Save this article

Energy analysis of a solar air collector with rows of fins

Author

Listed:
  • Moummi, N
  • Youcef-Ali, S
  • Moummi, A
  • Desmons, J.Y

Abstract

The necessity for improving the thermal performances of the solar air collector, for some needs, encouraged us to carry out this study. Initially, to improve the efficiency factor of these solar collectors, we create an increasingly turbulent flow between the absorber and the back wooden plate. For that, we use obstacles of various forms. In this study, we chose rectangular plate fins inserted perpendicular to the flow. The fluid flows out through the interstices between fins in the same row, this allows a good distribution of the fluid and reduces the dead zones. Secondly, and for the same configuration, we undertake a study on the evaluation of the transfer coefficient. The results are compared with those obtained with a solar air collector without fins, using two types of absorbers selective (in coppersun) or not selective (black-painted aluminium).

Suggested Citation

  • Moummi, N & Youcef-Ali, S & Moummi, A & Desmons, J.Y, 2004. "Energy analysis of a solar air collector with rows of fins," Renewable Energy, Elsevier, vol. 29(13), pages 2053-2064.
  • Handle: RePEc:eee:renene:v:29:y:2004:i:13:p:2053-2064
    DOI: 10.1016/j.renene.2003.11.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148103003835
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2003.11.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    2. Kumar, Mahesh & Sansaniwal, Sunil Kumar & Khatak, Pankaj, 2016. "Progress in solar dryers for drying various commodities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 346-360.
    3. Karsli, Suleyman, 2007. "Performance analysis of new-design solar air collectors for drying applications," Renewable Energy, Elsevier, vol. 32(10), pages 1645-1660.
    4. Velmurugan, V. & Naveen Kumar, K.J. & Noorul Haq, T. & Srithar, K., 2009. "Performance analysis in stepped solar still for effluent desalination," Energy, Elsevier, vol. 34(9), pages 1179-1186.
    5. Benli, Hüseyin, 2013. "Experimentally derived efficiency and exergy analysis of a new solar air heater having different surface shapes," Renewable Energy, Elsevier, vol. 50(C), pages 58-67.
    6. Rounis, Efstratios Dimitrios & Athienitis, Andreas & Stathopoulos, Theodore, 2021. "Review of air-based PV/T and BIPV/T systems - Performance and modelling," Renewable Energy, Elsevier, vol. 163(C), pages 1729-1753.
    7. Bensaci, Charaf-Eddine & Moummi, Abdelhafid & Sanchez de la Flor, Francisco J. & Rodriguez Jara, Enrique A. & Rincon-Casado, Alejandro & Ruiz-Pardo, Alvaro, 2020. "Numerical and experimental study of the heat transfer and hydraulic performance of solar air heaters with different baffle positions," Renewable Energy, Elsevier, vol. 155(C), pages 1231-1244.
    8. Sopian, K. & Alghoul, M.A. & Alfegi, Ebrahim M. & Sulaiman, M.Y. & Musa, E.A., 2009. "Evaluation of thermal efficiency of double-pass solar collector with porous–nonporous media," Renewable Energy, Elsevier, vol. 34(3), pages 640-645.
    9. Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.
    10. Rajaseenivasan, T. & Shanmugam, R.K. & Hareesh, V.M. & Srithar, K., 2016. "Combined probation of bubble column humidification dehumidification desalination system using solar collectors," Energy, Elsevier, vol. 116(P1), pages 459-469.
    11. Hernández, Alejandro L. & Quiñonez, José E., 2013. "Analytical models of thermal performance of solar air heaters of double-parallel flow and double-pass counter flow," Renewable Energy, Elsevier, vol. 55(C), pages 380-391.
    12. Ozgen, Filiz & Esen, Mehmet & Esen, Hikmet, 2009. "Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans," Renewable Energy, Elsevier, vol. 34(11), pages 2391-2398.
    13. Akpinar, Ebru Kavak & Koçyigit, Fatih, 2010. "Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates," Applied Energy, Elsevier, vol. 87(11), pages 3438-3450, November.
    14. Tanda, Giovanni, 2011. "Performance of solar air heater ducts with different types of ribs on the absorber plate," Energy, Elsevier, vol. 36(11), pages 6651-6660.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:29:y:2004:i:13:p:2053-2064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.