IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v248y2025ics0960148125007864.html

Adaptive operation of large hydro-wind-solar integrated systems by aggregation-decomposition under inconsistent resource conditions

Author

Listed:
  • Li, He
  • Zhao, Yuxiang
  • Liu, Pan
  • Cheng, Lei
  • Ming, Bo
  • Yang, Zhikai

Abstract

Development of large Hydro-Wind-Solar (HWS) power generation system involves complex hydraulic-electric linkages and severe resource variations. Inconsistent resources, reflected by changed statistical characteristics, may impair the system performance using traditional static operation rules extracted from historical series. Here, a framework for generating dynamic adaptive operation rules were proposed to deal with inconsistent resource conditions. First, a multivariate stochastic simulation model was used to generate inconsistent HWS scenarios. Second, a multiobjective optimization model was constructed, and static operation functions were extracted by aggregation-decomposition. Finally, adaptive operation rules were identified with a coupled “ensemble Kalman filter–k-nearest neighbors” algorithm and their parameters dynamically adjusted according to resource variations. This framework was applied to a clean-energy base at upper Yellow River, yielding the following results: (1) model simulation accuracy exceeded 99 %, and inconsistent scenarios were generated with mean values, Cv, seasonal variations; (2) independent and dependent variables for aggregation system were total input energy and total power output; dependent variables for two decomposition systems were release and carryover storage, identified from six independent variables; (3) under dynamic rules, total power generation and guaranteed rate were higher than under static rules by 5–6 % and 8–11 % respectively, and only mean variation affected operation benefits. Large benefit improvement and stable parameters appeared in downstream system.

Suggested Citation

  • Li, He & Zhao, Yuxiang & Liu, Pan & Cheng, Lei & Ming, Bo & Yang, Zhikai, 2025. "Adaptive operation of large hydro-wind-solar integrated systems by aggregation-decomposition under inconsistent resource conditions," Renewable Energy, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:renene:v:248:y:2025:i:c:s0960148125007864
    DOI: 10.1016/j.renene.2025.123124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125007864
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.123124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Zhang, Yi & Jia, Zebin, 2024. "Assessing hydropower capability for accommodating variable renewable energy considering peak shaving of multiple power grids," Energy, Elsevier, vol. 305(C).
    2. Shaokun He & Shenglian Guo & Guang Yang & Kebing Chen & Dedi Liu & Yanlai Zhou, 2020. "Optimizing Operation Rules of Cascade Reservoirs for Adapting Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 101-120, January.
    3. Shanshan Wen & Buda Su & Jinlong Huang & Yanjun Wang & Simon Treu & Fushuang Jiang & Shan Jiang & Han Jiang, 2024. "Attribution of streamflow changes during 1961–2019 in the Upper Yangtze and the Upper Yellow River basins," Climatic Change, Springer, vol. 177(4), pages 1-20, April.
    4. Cheng, Qian & Liu, Pan & Xia, Jun & Ming, Bo & Cheng, Lei & Chen, Jie & Xie, Kang & Liu, Zheyuan & Li, Xiao, 2022. "Contribution of complementary operation in adapting to climate change impacts on a large-scale wind–solar–hydro system: A case study in the Yalong River Basin, China," Applied Energy, Elsevier, vol. 325(C).
    5. Zhou, Yanlai & Guo, Shenglian & Chang, Fi-John & Liu, Pan & Chen, Alexander B., 2018. "Methodology that improves water utilization and hydropower generation without increasing flood risk in mega cascade reservoirs," Energy, Elsevier, vol. 143(C), pages 785-796.
    6. Li, He & Liu, Pan & Guo, Shenglian & Cheng, Lei & Huang, Kangdi & Feng, Maoyuan & He, Shaokun & Ming, Bo, 2021. "Deriving adaptive long-term complementary operating rules for a large-scale hydro-photovoltaic hybrid power plant using ensemble Kalman filter," Applied Energy, Elsevier, vol. 301(C).
    7. Zhang, Yi & Cheng, Chuntian & Yang, Tiantian & Jin, Xiaoyu & Jia, Zebin & Shen, Jianjian & Wu, Xinyu, 2022. "Assessment of climate change impacts on the hydro-wind-solar energy supply system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    8. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Li, Gang & Liu, Lingjun, 2022. "Impacts of different wind and solar power penetrations on cascade hydroplants operation," Renewable Energy, Elsevier, vol. 182(C), pages 227-244.
    9. Li, Fang-Fang & Qiu, Jun, 2016. "Multi-objective optimization for integrated hydro–photovoltaic power system," Applied Energy, Elsevier, vol. 167(C), pages 377-384.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Jianhua & Ming, Bo & Liu, Pan & Huang, Qiang & Guo, Yi & Chang, Jianxia & Zhang, Wei, 2023. "Refining long-term operation of large hydro–photovoltaic–wind hybrid systems by nesting response functions," Renewable Energy, Elsevier, vol. 204(C), pages 359-371.
    2. Cheng, Qian & Liu, Pan & Feng, Maoyuan & Cheng, Lei & Ming, Bo & Xie, Kang & Yang, Zhikai & Zhang, Xiaojing & Zheng, Yalian & Ye, Hao, 2025. "Leveraging a deep learning model to improve mid- and long-term operations of hydro-wind-photovoltaic complementary systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 222(C).
    3. Jing, Zhiqiang & Wang, Yimin & Chang, Jianxia & Wang, Xuebin & Zhou, Yong & Li, Liang & Tian, Yuyu, 2024. "Benefit compensation of hydropower-wind-photovoltaic complementary operation in the large clean energy base," Applied Energy, Elsevier, vol. 354(PA).
    4. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Developing operating rules for a hydro–wind–solar hybrid system considering peak-shaving demands," Applied Energy, Elsevier, vol. 360(C).
    5. Cheng, Qian & Liu, Pan & Ming, Bo & Yang, Zhikai & Cheng, Lei & Liu, Zheyuan & Huang, Kangdi & Xu, Weifeng & Gong, Lanqiang, 2024. "Synchronizing short-, mid-, and long-term operations of hydro-wind-photovoltaic complementary systems," Energy, Elsevier, vol. 305(C).
    6. Cheng, Xiong & Wan, Shixing & Zhengfeng, Bao & Wang, Lei & Li, Wenwu & Li, Xianshan & Zhong, Hao, 2025. "Credible capacity gain identification method of peak-shaving scheduling of cascade hydro-wind-solar complementary system," Renewable Energy, Elsevier, vol. 248(C).
    7. Ming, Bo & Liu, Pan & Guo, Shenglian & Cheng, Lei & Zhou, Yanlai & Gao, Shida & Li, He, 2018. "Robust hydroelectric unit commitment considering integration of large-scale photovoltaic power: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1341-1352.
    8. Cheng, Qian & Liu, Pan & Feng, Maoyuan & Cheng, Lei & Ming, Bo & Luo, Xinran & Liu, Weibo & Xu, Weifeng & Huang, Kangdi & Xia, Jun, 2023. "Complementary operation with wind and photovoltaic power induces the decrease in hydropower efficiency," Applied Energy, Elsevier, vol. 339(C).
    9. Xu, Yichao & Jiang, Zhiqiang & Peng, Wang & Lu, Peng & Wang, Jingyi & Xu, Yang & Lu, Jia, 2025. "Multi-objective optimization and mechanism analysis of integrated hydro-wind-solar-storage system: Based on medium-long-term complementary dispatching model coupled with short-term power balance," Energy, Elsevier, vol. 332(C).
    10. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Jurasz, Jakub & Zhang, Yi & Lu, Jia, 2023. "Exploring the transition role of cascade hydropower in 100% decarbonized energy systems," Energy, Elsevier, vol. 279(C).
    11. Lu, Na & Peng, Xiaoyue & Su, Chengguo & Wang, Guangyan & Sui, Quan, 2025. "Adaptive stochastic scheduling of cascade hydropower-photovoltaic power hybrid systems under climate change," Energy, Elsevier, vol. 319(C).
    12. Zhou, Yanlai & Guo, Shenglian & Chang, Fi-John & Xu, Chong-Yu, 2018. "Boosting hydropower output of mega cascade reservoirs using an evolutionary algorithm with successive approximation," Applied Energy, Elsevier, vol. 228(C), pages 1726-1739.
    13. Jin, Xiaoyu & Cheng, Chuntian & Cai, Shubing & Yan, Lingzhi & Zhao, Zhipeng, 2025. "Using stochastic dual dynamic programming to design long-term operation policy of hydro-wind-solar energy systems considering multiple coupled uncertainties and end-of-year carryover storage," Applied Energy, Elsevier, vol. 393(C).
    14. Barnam Jyoti Saharia & Raman Jee Pandey & Avik Ghosh & Nabin Sarmah, 2025. "Comparative study of metaheuristic algorithms for the optimal sizing of hybrid renewable energy system for a rural hamlet in Nagaland, North East India," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 16(3), pages 949-985, March.
    15. Zixing Wan & Wenwu Li & Mu He & Taotao Zhang & Shengzhe Chen & Weiwei Guan & Xiaojun Hua & Shang Zheng, 2025. "Research on Long-Term Scheduling Optimization of Water–Wind–Solar Multi-Energy Complementary System Based on DDPG," Energies, MDPI, vol. 18(15), pages 1-20, July.
    16. He, Shaokun & Li, BinBin & Li, Qianxun & Zheng, Hezhen & Chen, Yingjian, 2025. "Refining hydropower operation by dynamic control of cascade reservoir water levels with flood season segmentation," Energy, Elsevier, vol. 314(C).
    17. Mustafa Sahin Dogan & Josue Medellin-Azuara & Jay R. Lund, 2024. "Hydropower Reservoir Optimization with Solar Generation-Changed Energy Prices in California," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(6), pages 2135-2153, April.
    18. Yuni Xu & Xiang Fu & Xuefeng Chu, 2019. "Analyzing the Impacts of Climate Change on Hydro-Environmental Conflict-Resolution Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1591-1607, March.
    19. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    20. He, Zhoulei & Yang, Jingze & Li, Aijun & Deng, Qian & Yao, Hong, 2025. "Life cycle greenhouse gas emission assessment of solar power tower plant based on supercritical CO2 cycle operating at peak-shaving scenarios," Energy, Elsevier, vol. 332(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:248:y:2025:i:c:s0960148125007864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.