IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v244y2025ics0960148125003945.html
   My bibliography  Save this article

Ensemble learning based approach for the prediction of monthly significant wave heights

Author

Listed:
  • Chen, Jinzhou
  • Xue, Xinhua

Abstract

The monthly significant wave height is the average of the highest one-third waves (measured from trough to crest) that occur in a month. Accurate prediction of monthly significant wave heights is of great significance to wave power generation, marine traffic, disaster prevention and mitigation. This paper presents a novel stacked ensemble model for the prediction of monthly significant wave heights. 128 sets of data collected from a buoy station offshore the Atlantic Ocean were used to build the proposed models. Firstly, seven artificial intelligence (AI) models, namely the random forest, regression tree, long short-term memory, M5 model tree, adaptive neuro fuzzy inference system, least squares support vector machine optimized by improved particle swarm optimization, and back propagation neural network, were used to predict the monthly significant wave heights. Then, five statistical indices (e.g., coefficient of determination (R2), mean absolute error (MAE), root mean squared error (RMSE), mean absolute percentage error (MAPE) and discrepancy ratio (DR)) were used to evaluate the performance of the models. On the basis of the prediction results, three base models with good performance were selected from these seven models, and a novel stacked ensemble model was established to predict the monthly significant wave heights. The results of comparison between the stacked ensemble model and the other three AI base models show that the R2, MAPE, MAE and RMSE values of the stacked ensemble model were 0.9426, 3.198 %, 0.0575 m and 0.006 m, respectively, for the training datasets and 0.8564, 6.169 %, 0.100 m and 0.037 m, respectively, for the testing datasets, indicating that the stacked ensemble model has high prediction accuracy for monthly significant wave heights. In addition, the sensitivity and generalization ability of the stacked ensemble model were also analyzed in this study.

Suggested Citation

  • Chen, Jinzhou & Xue, Xinhua, 2025. "Ensemble learning based approach for the prediction of monthly significant wave heights," Renewable Energy, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:renene:v:244:y:2025:i:c:s0960148125003945
    DOI: 10.1016/j.renene.2025.122732
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125003945
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122732?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Mahdavi-Meymand, Amin & Sulisz, Wojciech, 2023. "Application of nested artificial neural network for the prediction of significant wave height," Renewable Energy, Elsevier, vol. 209(C), pages 157-168.
    2. Fu, Yang & Ying, Feixiang & Huang, Lingling & Liu, Yang, 2023. "Multi-step-ahead significant wave height prediction using a hybrid model based on an innovative two-layer decomposition framework and LSTM," Renewable Energy, Elsevier, vol. 203(C), pages 455-472.
    3. Ali, Mumtaz & Prasad, Ramendra, 2019. "Significant wave height forecasting via an extreme learning machine model integrated with improved complete ensemble empirical mode decomposition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 281-295.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Zihao & Ali, Mumtaz & Jamei, Mehdi & Xiang, Yong & Abdulla, Shahab & Yaseen, Zaher Mundher & Farooque, Aitazaz A., 2023. "Multivariate data decomposition based deep learning approach to forecast one-day ahead significant wave height for ocean energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    2. Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Deo, Ravinesh C., 2020. "Near real-time significant wave height forecasting with hybridized multiple linear regression algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    3. Shi, Ting & Wang, Huaiyu & Yang, Wenming & Peng, Xueyuan, 2024. "Mathematical modeling and optimization of gas foil bearings-rotor system in hydrogen fuel cell vehicles," Energy, Elsevier, vol. 290(C).
    4. Khan, Zulfiqar Ahmad & Khan, Shabbir Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2024. "DSPM: Dual sequence prediction model for efficient energy management in micro-grid," Applied Energy, Elsevier, vol. 356(C).
    5. Gao, Ruobin & Li, Ruilin & Hu, Minghui & Suganthan, Ponnuthurai Nagaratnam & Yuen, Kum Fai, 2023. "Dynamic ensemble deep echo state network for significant wave height forecasting," Applied Energy, Elsevier, vol. 329(C).
    6. Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Jamei, Mehdi & Yaseen, Zaher Mundher, 2023. "Ensemble robust local mean decomposition integrated with random forest for short-term significant wave height forecasting," Renewable Energy, Elsevier, vol. 205(C), pages 731-746.
    7. Wang, Huaizhi & Xue, Wenli & Liu, Yitao & Peng, Jianchun & Jiang, Hui, 2020. "Probabilistic wind power forecasting based on spiking neural network," Energy, Elsevier, vol. 196(C).
    8. Yuchen Zhang & Zhenquan Zhang & Jun Wang & Jian Qin & Shuting Huang & Gang Xue & Yanjun Liu, 2024. "Research on Excitation Estimation for Ocean Wave Energy Generators Based on Extended Kalman Filtering," Energies, MDPI, vol. 17(3), pages 1-17, February.
    9. Elham M. Al-Ali & Yassine Hajji & Yahia Said & Manel Hleili & Amal M. Alanzi & Ali H. Laatar & Mohamed Atri, 2023. "Solar Energy Production Forecasting Based on a Hybrid CNN-LSTM-Transformer Model," Mathematics, MDPI, vol. 11(3), pages 1-19, January.
    10. Daniel Clemente & Felipe Teixeira-Duarte & Paulo Rosa-Santos & Francisco Taveira-Pinto, 2023. "Advancements on Optimization Algorithms Applied to Wave Energy Assessment: An Overview on Wave Climate and Energy Resource," Energies, MDPI, vol. 16(12), pages 1-28, June.
    11. Mahdavi-Meymand, Amin & Sulisz, Wojciech, 2023. "Application of nested artificial neural network for the prediction of significant wave height," Renewable Energy, Elsevier, vol. 209(C), pages 157-168.
    12. González-Cabrera, Nestor & Ortiz-Bejar, Jose & Zamora-Mendez, Alejandro & Arrieta Paternina, Mario R., 2021. "On the Improvement of representative demand curves via a hierarchical agglomerative clustering for power transmission network investment," Energy, Elsevier, vol. 222(C).
    13. Zhao, Lingxiao & Li, Zhiyang & Pei, Yuguo & Qu, Leilei, 2024. "Disentangled Seasonal-Trend representation of improved CEEMD-GRU joint model with entropy-driven reconstruction to forecast significant wave height," Renewable Energy, Elsevier, vol. 226(C).
    14. Pang, Junheng & Dong, Sheng, 2023. "A novel multivariable hybrid model to improve short and long-term significant wave height prediction," Applied Energy, Elsevier, vol. 351(C).
    15. Zhang, Zhenquan & Qin, Jian & Wang, Dengshuai & Wang, Wei & Liu, Yanjun & Xue, Gang, 2023. "Research on wave excitation estimators for arrays of wave energy converters," Energy, Elsevier, vol. 264(C).
    16. Zhou, Jianguo & Zhou, Luming & Zhao, Yunlong & Wu, Kai, 2025. "Significant wave height prediction based on improved fuzzy C-means clustering and bivariate kernel density estimation," Renewable Energy, Elsevier, vol. 245(C).
    17. Zhao, Zhigao & Chen, Fei & He, Xianghui & Lan, Pengfei & Chen, Diyi & Yin, Xiuxing & Yang, Jiandong, 2024. "A universal hydraulic-mechanical diagnostic framework based on feature extraction of abnormal on-field measurements: Application in micro pumped storage system," Applied Energy, Elsevier, vol. 357(C).
    18. Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Sankaran, Adarsh & Deo, Ravinesh C. & Xiao, Fuyuan & Zhu, Shuyu, 2021. "Advanced extreme learning machines vs. deep learning models for peak wave energy period forecasting: A case study in Queensland, Australia," Renewable Energy, Elsevier, vol. 177(C), pages 1031-1044.
    19. Chi, Lixun & Su, Huai & Zio, Enrico & Qadrdan, Meysam & Li, Xueyi & Zhang, Li & Fan, Lin & Zhou, Jing & Yang, Zhaoming & Zhang, Jinjun, 2021. "Data-driven reliability assessment method of Integrated Energy Systems based on probabilistic deep learning and Gaussian mixture Model-Hidden Markov Model," Renewable Energy, Elsevier, vol. 174(C), pages 952-970.
    20. Karbasi, Masoud & Jamei, Mehdi & Malik, Anurag & Kisi, Ozgur & Yaseen, Zaher Mundher, 2023. "Multi-steps drought forecasting in arid and humid climate environments: Development of integrative machine learning model," Agricultural Water Management, Elsevier, vol. 281(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:244:y:2025:i:c:s0960148125003945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.