IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v244y2025ics0960148125003118.html
   My bibliography  Save this article

Experimental investigation of a baffled photovoltaic-thermal air collector with SiC nano-embedded thermal paste: A comparative study

Author

Listed:
  • Gürbüz, Emine Yağız
  • Şahinkesen, İstemihan
  • Tuncer, Azim Doğuş
  • Güler, Onur Vahip
  • Keçebaş, Ali
  • Georgiev, Aleksandar G.

Abstract

This study introduces a novel enhancement to photovoltaic-thermal (PVT) air collectors by integrating fins with silicon carbide (SiC) nanoparticles-doped thermal paste, a method not previously explored in the literature. The innovation leverages the superior thermal conductivity of SiC nanoparticles to improve heat dissipation, optimizing both electrical and thermal efficiency. Experimental tests were conducted on three configurations: a reference PVT system, a PVT system with fins using regular thermal paste, and a PVT system with fins attached using a SiC nanoparticles-doped thermal paste. The results demonstrated that the SiC-enhanced configuration (PVT-3) achieved the highest average efficiencies: 14.5 % electrical and 75.5 % thermal, outperforming the conventional setup (PVT-1) by 3 % and 25 %, respectively. PVT-3 outperformed PVT-2 by 7.7 % in thermal efficiency and 6.2 % in electrical efficiency. Additionally, PVT-3 showed a superior exergy efficiency of 11.7 %, a normalized power output efficiency (NPOE) of 66.2 %, a performance ratio (PR) of 0.85, and a sustainability index (SI) of 1.1. Economic analysis highlighted a net benefit of €59.17 with a LCOE of €0.0138/kWh and LCOH of €0.0029/kWh, demonstrating its economic feasibility despite a slightly longer payback period compared to the non-nanoparticle system. These findings confirm that integrating SiC nanoparticles into PVT systems enhances heat management, energy output, and economic performance. This study contributes to the development of sustainable energy solutions by improving PVT systems for broader adoption in renewable energy applications.

Suggested Citation

  • Gürbüz, Emine Yağız & Şahinkesen, İstemihan & Tuncer, Azim Doğuş & Güler, Onur Vahip & Keçebaş, Ali & Georgiev, Aleksandar G., 2025. "Experimental investigation of a baffled photovoltaic-thermal air collector with SiC nano-embedded thermal paste: A comparative study," Renewable Energy, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:renene:v:244:y:2025:i:c:s0960148125003118
    DOI: 10.1016/j.renene.2025.122649
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125003118
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122649?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Çiftçi, Erdem & Khanlari, Ataollah & Sözen, Adnan & Aytaç, İpek & Tuncer, Azim Doğuş, 2021. "Energy and exergy analysis of a photovoltaic thermal (PVT) system used in solar dryer: A numerical and experimental investigation," Renewable Energy, Elsevier, vol. 180(C), pages 410-423.
    2. Chow, T.T. & Pei, G. & Fong, K.F. & Lin, Z. & Chan, A.L.S. & Ji, J., 2009. "Energy and exergy analysis of photovoltaic-thermal collector with and without glass cover," Applied Energy, Elsevier, vol. 86(3), pages 310-316, March.
    3. Selimefendigil, Fatih & Bayrak, Fatih & Oztop, Hakan F., 2018. "Experimental analysis and dynamic modeling of a photovoltaic module with porous fins," Renewable Energy, Elsevier, vol. 125(C), pages 193-205.
    4. Gürbüz, Emine Yağız & Şahinkesen, İstemihan & Kusun, Barış & Tuncer, Azim Doğuş & Keçebaş, Ali, 2023. "Enhancing the performance of an unglazed solar air collector using mesh tubes and Fe3O4 nano-enhanced absorber coating," Energy, Elsevier, vol. 277(C).
    5. Jouybari, H. Javaniyan & Saedodin, S. & Zamzamian, A. & Nimvari, M. Eshagh & Wongwises, S., 2017. "Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: An experimental study," Renewable Energy, Elsevier, vol. 114(PB), pages 1407-1418.
    6. Tuncer, Azim Doğuş & Gürbüz, Emine Yağız & Şahinkesen, İstemihan & Georgiev, Aleksandar & Keçebaş, Ali, 2024. "Passive cooling of photovoltaic panels with latent heat storage unit: Analyzing the effects of using fins and iron nanoparticles on the performance, economy and environmental impact," Energy, Elsevier, vol. 288(C).
    7. Hazami, Majdi & Riahi, Ali & Mehdaoui, Farah & Nouicer, Omeima & Farhat, Abdelhamid, 2016. "Energetic and exergetic performances analysis of a PV/T (photovoltaic thermal) solar system tested and simulated under to Tunisian (North Africa) climatic conditions," Energy, Elsevier, vol. 107(C), pages 78-94.
    8. M. Granström & K. Petritsch & A. C. Arias & A. Lux & M. R. Andersson & R. H. Friend, 1998. "Laminated fabrication of polymeric photovoltaic diodes," Nature, Nature, vol. 395(6699), pages 257-260, September.
    9. Qu, Minglu & Yan, Xufeng & Wang, Haiyang & Hei, Yingxiao & Liu, Hongzhi & Li, Zhao, 2022. "Energy, exergy, economic and environmental analysis of photovoltaic/thermal integrated water source heat pump water heater," Renewable Energy, Elsevier, vol. 194(C), pages 1084-1097.
    10. Sahin, Ahmet Z. & Uddin, Mohammed Ayaz & Yilbas, Bekir S. & Al-Sharafi, Abdullah, 2020. "Performance enhancement of solar energy systems using nanofluids: An updated review," Renewable Energy, Elsevier, vol. 145(C), pages 1126-1148.
    11. Park, S.R. & Pandey, A.K. & Tyagi, V.V. & Tyagi, S.K., 2014. "Energy and exergy analysis of typical renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 105-123.
    12. Khanlari, Ataollah & Sözen, Adnan & Afshari, Faraz & Tuncer, Azim Doğuş, 2021. "Energy-exergy and sustainability analysis of a PV-driven quadruple-flow solar drying system," Renewable Energy, Elsevier, vol. 175(C), pages 1151-1166.
    13. Xu, Ning & Ji, Jie & Sun, Wei & Huang, Wenzhu & Li, Jing & Jin, Zhuling, 2016. "Numerical simulation and experimental validation of a high concentration photovoltaic/thermal module based on point-focus Fresnel lens," Applied Energy, Elsevier, vol. 168(C), pages 269-281.
    14. Wang, Zhangyuan & Qiu, Feng & Yang, Wansheng & Zhao, Xudong & Mei, Sheng, 2016. "Experimental investigation of the thermal and electrical performance of the heat pipe BIPV/T system with metal wires," Applied Energy, Elsevier, vol. 170(C), pages 314-323.
    15. Gürbüz, Emine Yağız & Şahinkesen, İstemihan & Tuncer, Azim Doğuş & Keçebaş, Ali, 2023. "Design and experimental analysis of a parallel-flow photovoltaic-thermal air collector with finned latent heat thermal energy storage unit," Renewable Energy, Elsevier, vol. 217(C).
    16. Riggs, Brian C. & Biedenharn, Richard & Dougher, Christopher & Ji, Yaping Vera & Xu, Qi & Romanin, Vince & Codd, Daniel S. & Zahler, James M. & Escarra, Matthew D., 2017. "Techno-economic analysis of hybrid PV/T systems for process heat using electricity to subsidize the cost of heat," Applied Energy, Elsevier, vol. 208(C), pages 1370-1378.
    17. Yao, Jian & Zheng, Sihang & Chen, Daochuan & Dai, Yanjun & Huang, Mingjun, 2021. "Performance improvement of vapor-injection heat pump system by employing PVT collector/evaporator for residential heating in cold climate region," Energy, Elsevier, vol. 219(C).
    18. Yazdanifard, Farideh & Ebrahimnia-Bajestan, Ehsan & Ameri, Mehran, 2016. "Investigating the performance of a water-based photovoltaic/thermal (PV/T) collector in laminar and turbulent flow regime," Renewable Energy, Elsevier, vol. 99(C), pages 295-306.
    19. Sukumaran, Sreenath & Sudhakar, K., 2018. "Performance analysis of solar powered airport based on energy and exergy analysis," Energy, Elsevier, vol. 149(C), pages 1000-1009.
    20. Stolarski, Mariusz Jerzy & Warmiński, Kazimierz & Krzyżaniak, Michał & Olba–Zięty, Ewelina & Stachowicz, Paweł, 2020. "Energy consumption and heating costs for a detached house over a 12-year period – Renewable fuels versus fossil fuels," Energy, Elsevier, vol. 204(C).
    21. Lin, Wenye & Ma, Zhenjun & Ren, Haoshan & Gschwander, Stefan & Wang, Shugang, 2019. "Multi-objective optimisation of thermal energy storage using phase change materials for solar air systems," Renewable Energy, Elsevier, vol. 130(C), pages 1116-1129.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gürbüz, Emine Yağız & Şahinkesen, İstemihan & Tuncer, Azim Doğuş & Keçebaş, Ali, 2023. "Design and experimental analysis of a parallel-flow photovoltaic-thermal air collector with finned latent heat thermal energy storage unit," Renewable Energy, Elsevier, vol. 217(C).
    2. Keçebaş, Ali & Güler, Onur Vahip & Georgiev, Aleksandar G. & Gürbüz, Emine Yağız & Tuncer, Azim Doğuş & Şahinkesen, İstemihan, 2025. "Thermodynamic analysis and efficiency enhancement of PV/T systems using ethanol-based phase change material," Energy, Elsevier, vol. 320(C).
    3. Sardarabadi, Mohammad & Hosseinzadeh, Mohammad & Kazemian, Arash & Passandideh-Fard, Mohammad, 2017. "Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints," Energy, Elsevier, vol. 138(C), pages 682-695.
    4. Das, Dudul & Kalita, Pankaj & Roy, Omkar, 2018. "Flat plate hybrid photovoltaic- thermal (PV/T) system: A review on design and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 111-130.
    5. Kazemian, Arash & Hosseinzadeh, Mohammad & Sardarabadi, Mohammad & Passandideh-Fard, Mohammad, 2018. "Experimental study of using both ethylene glycol and phase change material as coolant in photovoltaic thermal systems (PVT) from energy, exergy and entropy generation viewpoints," Energy, Elsevier, vol. 162(C), pages 210-223.
    6. Çiftçi, Erdem & Khanlari, Ataollah & Sözen, Adnan & Aytaç, İpek & Tuncer, Azim Doğuş, 2021. "Energy and exergy analysis of a photovoltaic thermal (PVT) system used in solar dryer: A numerical and experimental investigation," Renewable Energy, Elsevier, vol. 180(C), pages 410-423.
    7. Chen, J.F. & Zhang, L. & Dai, Y.J., 2018. "Performance analysis and multi-objective optimization of a hybrid photovoltaic/thermal collector for domestic hot water application," Energy, Elsevier, vol. 143(C), pages 500-516.
    8. Ceylin Şirin & Fatih Selimefendigil & Hakan Fehmi Öztop, 2023. "Performance Analysis and Identification of an Indirect Photovoltaic Thermal Dryer with Aluminum Oxide Nano-Embedded Thermal Energy Storage Modification," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    9. Shahsavar, Amin & Alwaeli, Ali H.A. & Azimi, Neda & Rostami, Shirin & Sopian, Kamaruzzaman & Arıcı, Müslüm & Estellé, Patrice & Nižetić, Sandro & Kasaeian, Alibakhsh & Ali, Hafiz Muhammad & Ma, Zhenju, 2022. "Exergy studies in water-based and nanofluid-based photovoltaic/thermal collectors: Status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Khanlari, Ataollah & Tuncer, Azim Doğuş, 2023. "Analysis of an infrared-assisted triple-flow prototype solar drying system with nano-embedded absorber coating: An experimental and numerical study," Renewable Energy, Elsevier, vol. 216(C).
    11. Salari, Ali & Hakkaki-Fard, Ali, 2019. "A numerical study of dust deposition effects on photovoltaic modules and photovoltaic-thermal systems," Renewable Energy, Elsevier, vol. 135(C), pages 437-449.
    12. Islam, M.M. & Hasanuzzaman, M. & Rahim, N.A. & Pandey, A.K. & Rawa, M. & Kumar, L., 2021. "Real time experimental performance investigation of a NePCM based photovoltaic thermal system: An energetic and exergetic approach," Renewable Energy, Elsevier, vol. 172(C), pages 71-87.
    13. Chen, Heng & Mansir, Ibrahim B. & Chauhan, Bhupendra Singh & Al-Zahrani, Ahmed & Deifalla, Ahmed & Hua, Yinhai & Peng, Fan, 2023. "A comprehensive numerical study on the effectiveness of a rotational-based PTC collector integrated porous foam and PV module," Renewable Energy, Elsevier, vol. 215(C).
    14. Chen, Haiping & Zhang, Heng & Li, Mingjie & Liu, Haowen & Huang, Jiguang, 2018. "Experimental investigation of a novel LCPV/T system with micro-channel heat pipe array," Renewable Energy, Elsevier, vol. 115(C), pages 773-782.
    15. Azim Doğuş Tuncer & Emine Yağız Gürbüz & Ali Keçebaş & Aleksandar G. Georgiev, 2023. "Experimental Evaluation of a Photovoltaic/Thermal Air Heater with Metal Mesh-Integrated Thermal Energy Storage System," Energies, MDPI, vol. 16(8), pages 1-19, April.
    16. Yazdanifard, Farideh & Ameri, Mehran, 2018. "Exergetic advancement of photovoltaic/thermal systems (PV/T): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 529-553.
    17. Hosseinzadeh, Mohammad & Sardarabadi, Mohammad & Passandideh-Fard, Mohammad, 2018. "Energy and exergy analysis of nanofluid based photovoltaic thermal system integrated with phase change material," Energy, Elsevier, vol. 147(C), pages 636-647.
    18. Gunjo, Dawit Gudeta & Mahanta, Pinakeswar & Robi, Puthuveettil Sreedharan, 2017. "Exergy and energy analysis of a novel type solar collector under steady state condition: Experimental and CFD analysis," Renewable Energy, Elsevier, vol. 114(PB), pages 655-669.
    19. Khanlari, Ataollah & Tuncer, Azim Doğuş & Sözen, Adnan & Aytaç, İpek & Çiftçi, Erdem & Variyenli, Halil İbrahim, 2022. "Energy and exergy analysis of a vertical solar air heater with nano-enhanced absorber coating and perforated baffles," Renewable Energy, Elsevier, vol. 187(C), pages 586-602.
    20. Chen, Haifei & Li, Guiqiang & Zhong, Yang & Wang, Yunjie & Cai, Baorui & Yang, Jie & Badiei, Ali & Zhang, Yang, 2021. "Exergy analysis of a high concentration photovoltaic and thermal system for comprehensive use of heat and electricity," Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:244:y:2025:i:c:s0960148125003118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.