IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v243y2025ics0960148125002952.html
   My bibliography  Save this article

Machine learning prediction of biochar-specific surface area based on plant characterization information

Author

Listed:
  • Jiang, Zihao
  • Xia, Qi
  • Lu, Xueying
  • Yue, Wenjing
  • Chen, Aihui
  • Liu, Xiaogang
  • Chen, Juhui
  • Zhao, Chenxi

Abstract

Biochar has a wide range of environmental applications. The use of machine learning technology to predict the characteristics of biochar adsorption is a hot topic in current research. This paper proposes the concept of plant organs (PO) information for the first time. Based on a deep neural network (DNN) and light gradient boosting machine (LightGBM), a machine learning prediction model was created for the specific surface area of biochar, with 70 % of the 187 collected data points used as the training set and 30 % as the test set. The findings demonstrate that adding PO characteristics enhances the model's performance and accuracy, with the DNN model outperforming the LightGBM model. With the DNN model, the RMSE is lowered by 7.58, the MAE is reduced by 4.52, and the R2 increases from 0.897 to 0.917. Combined with Pearson correlation coefficient (PCC) analysis and Shapley additive explanations (SHAP) analysis, pyrolysis temperature (PT) is a key feature affecting the specific surface area of biochar, and PO significantly impacts the model's performance. By identifying and selecting specific plant organs for biochar production, researchers can more effectively optimize the biochar production process.

Suggested Citation

  • Jiang, Zihao & Xia, Qi & Lu, Xueying & Yue, Wenjing & Chen, Aihui & Liu, Xiaogang & Chen, Juhui & Zhao, Chenxi, 2025. "Machine learning prediction of biochar-specific surface area based on plant characterization information," Renewable Energy, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125002952
    DOI: 10.1016/j.renene.2025.122633
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125002952
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122633?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muzyka, Roksana & Misztal, Edyta & Hrabak, Joanna & Banks, Scott W. & Sajdak, Marcin, 2023. "Various biomass pyrolysis conditions influence the porosity and pore size distribution of biochar," Energy, Elsevier, vol. 263(PE).
    2. Jia, Liangyuan & Shao, Wanyun & Wang, Jingjing & Qian, Yingying & Chen, Yingquan & Yang, Qingchun, 2024. "Machine learning-aided prediction of bio-BTX and olefins production from zeolite-catalyzed biomass pyrolysis," Energy, Elsevier, vol. 306(C).
    3. Li, Xiaoyu & Yuan, Changgui & Wang, Zhenpo, 2020. "State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression," Energy, Elsevier, vol. 203(C).
    4. Li, Xiaoyu & Yuan, Changgui & Li, Xiaohui & Wang, Zhenpo, 2020. "State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression," Energy, Elsevier, vol. 190(C).
    5. Liu, Yang & Ao, Wenya & Fu, Jie & Siyal, Asif Ali & An, Qing & Zhou, Chunbao & Liu, Chenglong & Zhang, Yingwen & Chen, Zhiwen & Yun, Huimin & Dai, Jianjun & Bi, Xiaotao, 2024. "Microwave-assisted pyrolysis of industrial biomass waste: Insights into kinetic, characteristics and intrinsic mechanisms," Energy, Elsevier, vol. 306(C).
    6. Yibrah Gebreyesus & Damian Dalton & Sebastian Nixon & Davide De Chiara & Marta Chinnici, 2023. "Machine Learning for Data Center Optimizations: Feature Selection Using Shapley Additive exPlanation (SHAP)," Future Internet, MDPI, vol. 15(3), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    2. Zhang, Yajun & Liu, Yajie & Wang, Jia & Zhang, Tao, 2022. "State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression," Energy, Elsevier, vol. 239(PB).
    3. Li, Yong & Wang, Liye & Feng, Yanbiao & Liao, Chenglin & Yang, Jue, 2024. "An online state-of-health estimation method for lithium-ion battery based on linear parameter-varying modeling framework," Energy, Elsevier, vol. 298(C).
    4. Fu, Shiyi & Tao, Shengyu & Fan, Hongtao & He, Kun & Liu, Xutao & Tao, Yulin & Zuo, Junxiong & Zhang, Xuan & Wang, Yu & Sun, Yaojie, 2024. "Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method," Applied Energy, Elsevier, vol. 353(PA).
    5. Liu, Yunpeng & Hou, Bo & Ahmed, Moin & Mao, Zhiyu & Feng, Jiangtao & Chen, Zhongwei, 2024. "A hybrid deep learning approach for remaining useful life prediction of lithium-ion batteries based on discharging fragments," Applied Energy, Elsevier, vol. 358(C).
    6. Yang, Yue & Chen, Lei & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2020. "Capacity fade characteristics of lithium iron phosphate cell during dynamic cycle," Energy, Elsevier, vol. 206(C).
    7. Tang, Ting & Yuan, Huimei, 2022. "A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    8. Shen, Dongxu & Wu, Lifeng & Kang, Guoqing & Guan, Yong & Peng, Zhen, 2021. "A novel online method for predicting the remaining useful life of lithium-ion batteries considering random variable discharge current," Energy, Elsevier, vol. 218(C).
    9. Shi, Mingjie & Xu, Jun & Lin, Chuanping & Mei, Xuesong, 2022. "A fast state-of-health estimation method using single linear feature for lithium-ion batteries," Energy, Elsevier, vol. 256(C).
    10. Ospina Agudelo, Brian & Zamboni, Walter & Monmasson, Eric, 2021. "Application domain extension of incremental capacity-based battery SoH indicators," Energy, Elsevier, vol. 234(C).
    11. Zhongwei Zhang & Dan Zhou & Neng Xiong & Qiao Zhu, 2021. "Non-Fragile H ∞ Nonlinear Observer for State of Charge Estimation of Lithium-Ion Battery Based on a Fractional-Order Model," Energies, MDPI, vol. 14(16), pages 1-17, August.
    12. Ruan, Haokai & Wei, Zhongbao & Shang, Wentao & Wang, Xuechao & He, Hongwen, 2023. "Artificial Intelligence-based health diagnostic of Lithium-ion battery leveraging transient stage of constant current and constant voltage charging," Applied Energy, Elsevier, vol. 336(C).
    13. Sun, Tao & Wang, Shaoqing & Jiang, Sheng & Xu, Bowen & Han, Xuebing & Lai, Xin & Zheng, Yuejiu, 2022. "A cloud-edge collaborative strategy for capacity prognostic of lithium-ion batteries based on dynamic weight allocation and machine learning," Energy, Elsevier, vol. 239(PC).
    14. Zhang, Qisong & Yang, Lin & Guo, Wenchao & Qiang, Jiaxi & Peng, Cheng & Li, Qinyi & Deng, Zhongwei, 2022. "A deep learning method for lithium-ion battery remaining useful life prediction based on sparse segment data via cloud computing system," Energy, Elsevier, vol. 241(C).
    15. Kai-Rong Lin & Chien-Chung Huang & Kin-Cheong Sou, 2023. "Lithium-Ion Battery State of Health Estimation Using Simple Regression Model Based on Incremental Capacity Analysis Features," Energies, MDPI, vol. 16(20), pages 1-20, October.
    16. Liu, Gengfeng & Zhang, Xiangwen & Liu, Zhiming, 2022. "State of health estimation of power batteries based on multi-feature fusion models using stacking algorithm," Energy, Elsevier, vol. 259(C).
    17. Xu, Tingting & Peng, Zhen & Wu, Lifeng, 2021. "A novel data-driven method for predicting the circulating capacity of lithium-ion battery under random variable current," Energy, Elsevier, vol. 218(C).
    18. Hojin Cheon & Jihun Jeon & Byungil Jung & Hongseok Kim, 2025. "Battery Health Diagnosis via Neural Surrogate Model: From Lab to Field," Energies, MDPI, vol. 18(9), pages 1-15, May.
    19. Jiang, Bo & Zhu, Yuli & Zhu, Jiangong & Wei, Xuezhe & Dai, Haifeng, 2023. "An adaptive capacity estimation approach for lithium-ion battery using 10-min relaxation voltage within high state of charge range," Energy, Elsevier, vol. 263(PC).
    20. Solai, Elie & Guadagnini, Maxime & Beaugendre, Héloïse & Daccord, Rémi & Congedo, Pietro, 2022. "Validation of a data-driven fast numerical model to simulate the immersion cooling of a lithium-ion battery pack," Energy, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125002952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.