IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v243y2025ics0960148125002150.html
   My bibliography  Save this article

Scaled and green production of C-doped BN derived from biomass waste for highly efficient oxidative dehydrogenation of propane to propylene

Author

Listed:
  • Li, Dong
  • Chen, Yanjun
  • Sun, Mengyao
  • Ma, Wenwen
  • Dong, Yang
  • Xie, Zean
  • Kong, Lian
  • Zhao, Zhen

Abstract

Biomass waste can be utilized to develop boron carbonitride (BCN) catalysts with tailorable structures and adjustable performance. In this study, the low-cost carbon-doped boron nitride (CBN) was successfully synthesized via ball milling of pine sawdust as the renewable carbon source, and these catalysts exhibit excellent performance for the oxidative dehydrogenation of propane. The optimized CBN-7.5 catalyst without undergoing any activation treatment exhibited superior catalytic activity compared with other CBN-x and activated BN catalysts. At 520 °C, the catalyst achieved a propane conversion of 76.4 % and an olefin yield of 45.4 %. The results demonstrated that the improved catalytic performance could be attributed to the increased defect sites and active BOx species in h-BN derived from carbon incorporation, along with the high specific surface area and optimal carbon content. This study presents a novel approach for the efficient and sustainable utilization of biomass waste for the oxidative dehydrogenation of light alkanes and large-scale production of borocarbonitride catalysts.

Suggested Citation

  • Li, Dong & Chen, Yanjun & Sun, Mengyao & Ma, Wenwen & Dong, Yang & Xie, Zean & Kong, Lian & Zhao, Zhen, 2025. "Scaled and green production of C-doped BN derived from biomass waste for highly efficient oxidative dehydrogenation of propane to propylene," Renewable Energy, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125002150
    DOI: 10.1016/j.renene.2025.122553
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125002150
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122553?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Weiwei Lei & David Portehault & Dan Liu & Si Qin & Ying Chen, 2013. "Porous boron nitride nanosheets for effective water cleaning," Nature Communications, Nature, vol. 4(1), pages 1-7, June.
    2. Wilk, Małgorzata & Śliz, Maciej & Gajek, Marcin, 2021. "The effects of hydrothermal carbonization operating parameters on high-value hydrochar derived from beet pulp," Renewable Energy, Elsevier, vol. 177(C), pages 216-228.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Yingyuan & Han, Xinqi & Fakudze, Sandile & Zhang, Yu & Ghysels, Stef & Wu, Di & Chen, Jianqiang, 2025. "Efficient conversion of pomelo peel into upgraded bio-crude oil and solid fuel through metal–organic framework catalyzed hydrothermal liquefaction," Energy, Elsevier, vol. 319(C).
    2. Krystian Krochmalny & Halina Pawlak-Kruczek & Norbert Skoczylas & Mateusz Kudasik & Aleksandra Gajda & Renata Gnatowska & Monika Serafin-Tkaczuk & Tomasz Czapka & Amit K. Jaiswal & Vishwajeet & Amit A, 2022. "Use of Hydrothermal Carbonization and Cold Atmospheric Plasma for Surface Modification of Brewer’s Spent Grain and Activated Carbon," Energies, MDPI, vol. 15(12), pages 1-11, June.
    3. Maciej Śliz & Klaudia Czerwińska & Aneta Magdziarz & Lidia Lombardi & Małgorzata Wilk, 2022. "Hydrothermal Carbonization of the Wet Fraction from Mixed Municipal Solid Waste: A Fuel and Structural Analysis of Hydrochars," Energies, MDPI, vol. 15(18), pages 1-15, September.
    4. Nicholas Davison & Jaime Borbolla Gaxiola & Divya Gupta & Anurag Garg & Timothy Cockerill & Yuzhou Tang & Xueliang Yuan & Andrew Ross, 2022. "Potential Greenhouse Gas Mitigation for Converting High Moisture Food Waste into Bio-Coal from Hydrothermal Carbonisation in India, Europe and China," Energies, MDPI, vol. 15(4), pages 1-37, February.
    5. Mikusińska, Joanna & Szkadłubowicz, Klaudia & Prus, Zuzanna & Kuźnia, Monika & Gajek, Marcin & Wilk, Małgorzata, 2025. "Fuel properties characterization of hydrochars derived from agricultural digestate," Renewable Energy, Elsevier, vol. 244(C).
    6. Chen, Yuxiang & Li, Chao & Zhang, Lijun & Zhang, Shu & Xiang, Jun & Hu, Song & Wang, Yi & Hu, Xun, 2024. "Varied directions of heat flow and emission of volatiles impact evolution of products in pyrolysis of wet and dry pine needles," Renewable Energy, Elsevier, vol. 226(C).
    7. Joanna Mikusińska & Monika Kuźnia & Klaudia Czerwińska & Małgorzata Wilk, 2023. "Hydrothermal Carbonization of Digestate Produced in the Biogas Production Process," Energies, MDPI, vol. 16(14), pages 1-18, July.
    8. Jiao Lan & Zengxi Wei & Ying-Rui Lu & DeChao Chen & Shuangliang Zhao & Ting-Shan Chan & Yongwen Tan, 2023. "Efficient electrosynthesis of formamide from carbon monoxide and nitrite on a Ru-dispersed Cu nanocluster catalyst," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Wilk, Małgorzata & Śliz, Maciej & Lubieniecki, Bogusław, 2021. "Hydrothermal co-carbonization of sewage sludge and fuel additives: Combustion performance of hydrochar," Renewable Energy, Elsevier, vol. 178(C), pages 1046-1056.
    10. Han, Ning & Wang, Shuo & Rana, Ashvinder K. & Asif, Saira & Klemeš, Jiří Jaromír & Bokhari, Awais & Long, Jinlin & Thakur, Vijay Kumar & Zhao, Xiaolin, 2022. "Rational design of boron nitride with different dimensionalities for sustainable applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    11. Wądrzyk, Mariusz & Korzeniowski, Łukasz & Plata, Marek & Janus, Rafał & Lewandowski, Marek & Michalik, Marek & Magdziarz, Aneta, 2023. "Pyrolysis of hydrochars obtained from blackcurrant pomace in single and binary solvent systems," Renewable Energy, Elsevier, vol. 214(C), pages 383-394.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125002150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.