IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v243y2025ics0960148125001788.html
   My bibliography  Save this article

Swarm intelligence-based Multi-Layer Kernel Meta Extreme Learning Machine for tidal current to power prediction

Author

Listed:
  • Dokur, Emrah
  • Erdogan, Nuh
  • Yuzgec, Ugur

Abstract

Tidal energy, with its predictable and consistent nature, offers a scalable ocean renewable resource that can diversify the energy generation mix for countries with suitable coastal conditions. Accurate tidal current-to-power forecasting is essential to optimize power system management, improve grid stability, and inform the design of power processing and storage units. This study proposes a novel hybrid model integrating Swarm Decomposition with a Multi-Layer Kernel Meta Extreme Learning Machine to forecast non-stationary tidal currents. The Swarm Decomposition isolates key oscillatory components, reducing noise and improving feature extraction, while the kernel-based architecture enhances generalization and scalability by minimizing the need for extensive parameter tuning, resulting in higher forecasting accuracy and computational efficiency. The model is validated on two real-world tidal current datasets from distinct locations, incorporating seasonal variations, and compared against well-established extreme learning machines and deep learning models. A sensitivity analysis of signal decomposition parameters demonstrated their impact on decomposition quality and computational cost. The proposed model outperformed superior performance on both tidal datasets, achieving a 5-fold reduction in mean squared error and increased R2 from 0.9653 to 0.9933. These findings highlight the model’s robustness and adaptability to diverse tidal conditions, making it a reliable tool for tidal power forecasting.

Suggested Citation

  • Dokur, Emrah & Erdogan, Nuh & Yuzgec, Ugur, 2025. "Swarm intelligence-based Multi-Layer Kernel Meta Extreme Learning Machine for tidal current to power prediction," Renewable Energy, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125001788
    DOI: 10.1016/j.renene.2025.122516
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125001788
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122516?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dokur, Emrah & Erdogan, Nuh & Salari, Mahdi Ebrahimi & Karakuzu, Cihan & Murphy, Jimmy, 2022. "Offshore wind speed short-term forecasting based on a hybrid method: Swarm decomposition and meta-extreme learning machine," Energy, Elsevier, vol. 248(C).
    2. Lewis, Matt & O’Hara Murray, Rory & Fredriksson, Sam & Maskell, John & de Fockert, Anton & Neill, Simon P & Robins, Peter E, 2021. "A standardised tidal-stream power curve, optimised for the global resource," Renewable Energy, Elsevier, vol. 170(C), pages 1308-1323.
    3. Krishna Rayi, Vijaya & Mishra, S.P. & Naik, Jyotirmayee & Dash, P.K., 2022. "Adaptive VMD based optimized deep learning mixed kernel ELM autoencoder for single and multistep wind power forecasting," Energy, Elsevier, vol. 244(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carballo, R. & Fouz, D.M. & López, I. & Iglesias, G., 2024. "Hydrokinetic energy site selection under high seasonality: The i-IHE index," Renewable Energy, Elsevier, vol. 237(PC).
    2. Meng, Anbo & Zhang, Haitao & Yin, Hao & Xian, Zikang & Chen, Shu & Zhu, Zibin & Zhang, Zheng & Rong, Jiayu & Li, Chen & Wang, Chenen & Wu, Zhenbo & Deng, Weisi & Luo, Jianqiang & Wang, Xiaolin, 2023. "A novel multi-gradient evolutionary deep learning approach for few-shot wind power prediction using time-series GAN," Energy, Elsevier, vol. 283(C).
    3. Bashir, Hassan & Sibtain, Muhammad & Hanay, Özge & Azam, Muhammad Imran & Qurat-ul-Ain, & Saleem, Snoober, 2023. "Decomposition and Harris hawks optimized multivariate wind speed forecasting utilizing sequence2sequence-based spatiotemporal attention," Energy, Elsevier, vol. 278(PB).
    4. Wang, Yun & Chen, Tuo & Zou, Runmin & Song, Dongran & Zhang, Fan & Zhang, Lingjun, 2022. "Ensemble probabilistic wind power forecasting with multi-scale features," Renewable Energy, Elsevier, vol. 201(P1), pages 734-751.
    5. Xianwang Li & Zhongxiang Huang & Saihu Liu & Jinxin Wu & Yuxiang Zhang, 2023. "Short-Term Subway Passenger Flow Prediction Based on Time Series Adaptive Decomposition and Multi-Model Combination (IVMD-SE-MSSA)," Sustainability, MDPI, vol. 15(10), pages 1-30, May.
    6. Geng, Donghan & Zhang, Yongkang & Zhang, Yunlong & Qu, Xingchuang & Li, Longfei, 2025. "A hybrid model based on CapSA-VMD-ResNet-GRU-attention mechanism for ultra-short-term and short-term wind speed prediction," Renewable Energy, Elsevier, vol. 240(C).
    7. Yang, Zihao & Dong, Sheng, 2023. "A novel decomposition-based approach for non-stationary hub-height wind speed modelling," Energy, Elsevier, vol. 283(C).
    8. Yang, Mao & Huang, Yutong & Xu, Chuanyu & Liu, Chenyu & Dai, Bozhi, 2025. "Review of several key processes in wind power forecasting: Mathematical formulations, scientific problems, and logical relations," Applied Energy, Elsevier, vol. 377(PC).
    9. Lins, Davi Ribeiro & Guedes, Kevin Santos & Pitombeira-Neto, Anselmo Ramalho & Rocha, Paulo Alexandre Costa & de Andrade, Carla Freitas, 2023. "Comparison of the performance of different wind speed distribution models applied to onshore and offshore wind speed data in the Northeast Brazil," Energy, Elsevier, vol. 278(PA).
    10. Burić, Melita & Grgurić, Sanja & Mikulčić, Hrvoje & Wang, Xuebin, 2021. "A numerical investigation of tidal current energy resource potential in a sea strait," Energy, Elsevier, vol. 234(C).
    11. Huang, Ying & Wang, Shilong & Li, Ke & Fan, Zhuwei & Xie, Haiming & Jiang, Fachao, 2023. "Multi-parameter adaptive online energy management strategy for concrete truck mixers with a novel hybrid powertrain considering vehicle mass," Energy, Elsevier, vol. 277(C).
    12. Chen, Yunxiao & Lin, Chaojing & Zhang, Yilan & Liu, Jinfu & Yu, Daren, 2024. "Day-ahead load forecast based on Conv2D-GRU_SC aimed to adapt to steep changes in load," Energy, Elsevier, vol. 302(C).
    13. Jinhua Zhang & Hui Li & Peng Cheng & Jie Yan, 2024. "Interpretable Wind Power Short-Term Power Prediction Model Using Deep Graph Attention Network," Energies, MDPI, vol. 17(2), pages 1-16, January.
    14. Tseng, Chien-Yung & Musa, Mirko, 2025. "Hydrokinetic energy applications within hydropower tailrace channels: Implications, siting, and U.S. potential," Renewable Energy, Elsevier, vol. 238(C).
    15. Neill, Simon P. & Fairley, Iain A. & Rowlands, Steven & Young, Saul & Hill, Tom & Unsworth, Christopher A. & King, Nicholas & Roberts, Michael J. & Austin, Martin J. & Hughes, Peter & Masters, Ian & O, 2023. "Characterizing the Marine Energy Test Area (META) in Wales, UK," Renewable Energy, Elsevier, vol. 205(C), pages 447-460.
    16. Xiuting Guo & Changsheng Zhu & Jie Hao & Lingjie Kong & Shengcai Zhang, 2023. "A Point-Interval Forecasting Method for Wind Speed Using Improved Wild Horse Optimization Algorithm and Ensemble Learning," Sustainability, MDPI, vol. 16(1), pages 1-26, December.
    17. Dongran Song & Xiao Tan & Qian Huang & Li Wang & Mi Dong & Jian Yang & Solomin Evgeny, 2024. "Review of AI-Based Wind Prediction within Recent Three Years: 2021–2023," Energies, MDPI, vol. 17(6), pages 1-22, March.
    18. Wang, Shuangxin & Shi, Jiarong & Yang, Wei & Yin, Qingyan, 2024. "High and low frequency wind power prediction based on Transformer and BiGRU-Attention," Energy, Elsevier, vol. 288(C).
    19. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2023. "Wind power forecasting: A hybrid forecasting model and multi-task learning-based framework," Energy, Elsevier, vol. 278(PA).
    20. Yuzgec, Ugur & Dokur, Emrah & Balci, Mehmet, 2024. "A novel hybrid model based on Empirical Mode Decomposition and Echo State Network for wind power forecasting," Energy, Elsevier, vol. 300(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125001788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.