IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v239y2025ics0960148124020457.html
   My bibliography  Save this article

In-situ blade strain measurements and fatigue analysis of a cross-flow turbine operating in a tidal flow

Author

Listed:
  • Bichanich, Mason
  • Bharath, Aidan
  • O’Byrne, Patrick
  • Monahan, Michael
  • Ross, Hannah
  • Raye, Robert
  • Nichols, Casey
  • Candon, Charles
  • Wosnik, Martin

Abstract

Cross-flow turbines (CFTs) are inherently unsteady devices with regards to operating principle and loading. By improving our understanding of the dynamic loading on these turbines, we hope to better inform CFT design, improve survivability, and reduce overall costs. The University of New Hampshire (UNH) and the National Renewable Energy Laboratory (NREL) collaborated on a project to instrument and test a four-bladed New Energy Corp. vertical axis cross-flow turbine in a real tidal flow. One blade from the 3.2 m diameter x 1.7 m height turbine was instrumented with eight full-bridge strain gauges along the span of the blade. The turbine was then deployed at the UNH-Atlantic Marine Energy Center (AMEC) Tidal Energy Test Site in Portsmouth, NH. Time-synchronized measurements of blade strain, inflow, thrust, rotational speed, and electrical output were obtained to characterize blade loading under various conditions. The blade strain was examined to assess the dynamic loading and conduct a fatigue analysis on the device.

Suggested Citation

  • Bichanich, Mason & Bharath, Aidan & O’Byrne, Patrick & Monahan, Michael & Ross, Hannah & Raye, Robert & Nichols, Casey & Candon, Charles & Wosnik, Martin, 2025. "In-situ blade strain measurements and fatigue analysis of a cross-flow turbine operating in a tidal flow," Renewable Energy, Elsevier, vol. 239(C).
  • Handle: RePEc:eee:renene:v:239:y:2025:i:c:s0960148124020457
    DOI: 10.1016/j.renene.2024.121977
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124020457
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121977?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:239:y:2025:i:c:s0960148124020457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.