IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v238y2025ics0960148124020949.html
   My bibliography  Save this article

Developing a multi-region coupled analysis method for floating offshore wind turbine based on OpenFOAM

Author

Listed:
  • Cai, Yefeng
  • Li, Xin
  • Zhao, Haisheng
  • Shi, Wei
  • Wang, Ziming

Abstract

As floating offshore wind turbines (FOWTs) continue to scale up in size, the simulation technology for coupling aerodynamic, hydrodynamic, and mooring forces presents significant challenges. This study proposes a multi-region coupled simulation solver, MRFoam, for FOWTs. The multi-region coupled method divides the computational domain into two parts: the turbine region and the floating platform region. This division reduces the number of grid cells and facilitates modular simulations for various structural forms and operating conditions. Compared to the traditional fully coupled method, the multi-region coupled method significantly improves computational efficiency. For various models and grid quantities, the computational efficiency of the multi-region coupled method is nearly double that of the fully coupled method with the results remaining almost identical. Subsequently, the multi-region coupled model is applied for the aerodynamic, hydrodynamic and mooring dynamic analyses of a large-scale FOWT (IEA 15 MW) under various wind and wave conditions. The study found that a decrease in wind speed increases the amplitude of surge response while decreasing the amplitude of heave response. Additionally, at lower wind speeds, an increase in wave height amplifies the platform's motion response, while the variation in aerodynamic thrust is slightly influenced by the change in the platform's motion amplitude.

Suggested Citation

  • Cai, Yefeng & Li, Xin & Zhao, Haisheng & Shi, Wei & Wang, Ziming, 2025. "Developing a multi-region coupled analysis method for floating offshore wind turbine based on OpenFOAM," Renewable Energy, Elsevier, vol. 238(C).
  • Handle: RePEc:eee:renene:v:238:y:2025:i:c:s0960148124020949
    DOI: 10.1016/j.renene.2024.122026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124020949
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:238:y:2025:i:c:s0960148124020949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.